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Key Points: 

• We discover a novel functional form for expressing backscattered electron intensity as a 
function of ice facet orientation. 

• Gauss-Newton/Bayesian inversion robustly and flexibly yields three-dimensional 
mesoscale morphology. 

• Surface roughness statistics are found to be sensitive not only to the degree of 
roughening, but also to its symmetry. 

  



Abstract 1 
We present a method for inferring surface morphology of ice from scanning electron microscope 2 
images. We first develop a novel functional form for the backscattered electron intensity as a 3 
function of ice facet orientation; this form is parameterized using smooth ice facets of known 4 
orientation. Three-dimensional representations of rough surfaces are retrieved at approximately 5 
micrometer resolution using Gauss-Newton inversion within a Bayesian framework. Statistical 6 
analysis of the resulting datasets permit characterization of ice surface roughness with a much 7 
higher statistical confidence than previously. A survey of results in the range −39℃ to −29℃ 8 
shows that characteristics of the roughness (e.g., Weibull parameters) are sensitive not only to 9 
the degree of roughening, but also to its symmetry. These results suggest that roughening 10 
characteristics obtained by remote sensing of atmospheric ice clouds can potentially provide 11 
more facet-specific information than has previously been appreciated. 12 
 13 
1 Introduction 14 
 15 

Cirrus clouds play an important role in the earth’s climate by absorbing and reflecting 16 
infrared and solar radiation [Stephens et al., 1990; Lynch, 2002; Baran, 2009, 2012, 2015]. The 17 
roughness of ice crystals in cirrus clouds affects this radiative balance, and also plays a role in 18 
remote sensing experiments [Xie, 2012; Ulanowski et al., 2014; Geogdzhayev and van 19 
Diedenhoven, 2016; Hioki et al., 2016]. Underlying these complex radiative interactions are 20 
individual, single-crystal processes, about which fundamental questions remain. Is there a 21 
difference, for example, between roughness associated with ice growth vs ablation? Is roughness 22 
facet-specific? To what extent do these differences influence remote sensing signals or 23 
atmospheric radiative transfer?  24 

 25 
To address these questions, directly examining individual ice crystals in controlled laboratory 26 

experiments is a useful approach; our ability to obtain direct measurements of roughness 27 
statistics of ice crystals can “help constrain optical models for climate models or radiative 28 
closure studies” [van Diedenhoven et al., 2016]. Indeed, recent years have seen considerable 29 
progress along these lines. In particular, investigations using scanning electron microscopy have 30 
shown that roughness can span multiple spatial scales [Magee, 2015; Bancroft et al., 2016], and 31 
can be distinctly azimuthally anisotropic [Pfalzgraff et al., 2010].  32 

 33 
Nevertheless, our understanding of ice crystal roughness remains unsatisfactory. While 34 

roughening on prismatic facets has been characterized quantitatively by examining the structure 35 
of facet intersections (because roughness is more easily detected there), quantification of 36 
roughness at facet interiors has so far proven elusive. A methodology to infer fully three-37 
dimensional morphology across broad regions of an ice facet, at scanning electron microscope 38 
resolution, would have distinct advantages for quantifying ice roughness.  39 

 40 
Here, we present such a methodology. The method uses Gauss-Newton inversion of scanning 41 

electron images of ice, within a Bayesian framework, to retrieve three-dimensional morphologies 42 
of the ice surface. This inversion (henceforth “GNBF inversion”; see [Rodgers, 2000]) is applied 43 
in such a way that contiguity of surface height is an integral part of the algorithm, a feature that 44 
greatly suppresses effects of noise. Combined with the fact that these retrievals produce large 45 
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datasets of surface heights over a two-dimensional surface, the ensuing statistical analyses are 46 
more robust than has previously been possible. 47 

 48 
This paper is organized as follows. Section 2 describes scanning electron microscopy and 49 

imaging methodologies. A methodology for instrument calibration, and an algorithm for 50 
retrieving ice roughness topography, are central results of the paper; these are developed in 51 
Sections 3.1 and 3.2. In Section 3.3 we present retrieved scattering roughness, including 52 
roughness statistics. Sections 4 and 5 provide discussion and conclusions. 53 
 54 
2 Methods 55 
 56 
2.1 SEM imaging of ice 57 
 58 

A Hitachi S-3400N VPSEM (henceforth “SEM”) equipped with a backscattered electron 59 
detector and a Deben Ultra-Cool stage MK3 version Peltier cooling element is used to collect 60 
Scanning Electron Micrographs, using a protocol similar to that described by the authors in 61 
previous papers (e.g., [Pfalzgraff et al., 2010; Neshyba et al., 2013]).  In all experiments, an 62 
accelerating voltage of 17 kV and a probe current of 70 µA are used. The typical experimental 63 
procedure is as follows. The specimen stub, made of rough-cut copper, is mounted on the room-64 
temperature cooling element. A few milliliters of deionized water are frozen and cooled to -15 65 
°C in an aluminum reservoir. The reservoir is placed in the chamber, and the chamber is closed 66 
and pumped down to a nominal operating pressure of 50 Pa, which corresponds to an ice-vapor 67 
equilibrium temperature of −32	℃. The temperature of the Peltier cooling element is then 68 
reduced to −31	℃ and the specimen stub is allowed to equilibrate with the cooling element. The 69 
temperature is then slowly lowered to −39	℃ at a rate of 0.5	℃ per minute. This slow rate of 70 
cooling prevents crystals from preferentially freezing to the cold stage background and increases 71 
the quantity of viable crystals growing on the copper stub. At this temperature, crystals grow 72 
quickly and appear to present smooth, prismatic facets. Once several suitable hexagonal crystals 73 
are located and imaged for calibration, the temperature is increased to −33	℃ or above. Further 74 
images of the same crystals are then acquired as they develop rough surfaces.  75 

The SEM detector geometry is such that four backscattered electron detectors are positioned 76 
symmetrically around the electron beam source; each detector occupies a quadrant of an annular 77 
disk (Fig. 2.1a). The internal radius is 2 mm and the external radius is 7 mm. The backscatter 78 
detector assembly is approximately 10 mm above the sample during imaging. The source passes 79 
through the midpoint of the detectors and scatters from the substrate surface. Using Hitachi’s 3D 80 
Acquisition Mode, returning electrons are captured by each detector independently at an interval 81 
of approximately four seconds per image, producing four near-simultaneous images of the 82 
surface. These images consist of pixels measuring ~1𝜇𝑚 across (depending on magnification), 83 
whose values are given in backscatter intensity units (BIU) in the range 0 (black) to 255 (white). 84 
As can be seen by the brightness variation in Fig. 2.1, detectors A and C are most sensitive to 85 
variations in tilt angles in the x-direction, while B and D detectors are most sensitive to 86 
variations in the y-direction. The dependence of backscattered intensity as a function of facet 87 
orientation is a critical part of our development, and is described in Section 3.1. Next, we review 88 
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formalism related to roughness distributions. 89 

 90 
(a) (b) 

 

 

 

Figure 2.1 (a) Schematic of an SEM backscatter detector assembly. The electron beam passes 
through the center of the disk, and each detector occupies the quadrant indicated. (b) Near-
simultaneous images of an ice crystal as recorded by each detector. 
  91 
2.2 Roughness distribution analysis 92 
 93 

The surface normal roughness value, r, defined in [Neshyba et al., 2013] but here extended to 94 
two surface directions, is given by 95 

 96 

𝑟 = 1 − 0

01 23
24

5
1 23

26

5

7
5

.              (2.1) 97 

 98 
where the surface height, z, is understood to be a function of spatial dimensions x and y. Each 99 
microsurface (pixel) in a given surface is therefore assigned a value of 𝑟. A roughness value of 100 
zero indicates a pixel that is coplanar with a reference plane. This reference frame is obtained by 101 
a bilinear fit to any given retrieved surface segment, typically spanning 50×50 pixels or more, 102 
which is judged to be large compared the roughness scale. For statistical analysis, the resulting 𝑟-103 
values are binned in intervals of ~0.01, and the resulting accumulations plotted as normalized 104 
probability density functions (PDFs). These PDFs are compared to two-parameter Weibull 105 
functions of the form 106 
 107 
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 109 
where 𝜇 = 1 − 𝑟, and 𝜎 is the standard deviation in 𝑟. The value of 𝜎 obtained this way is 110 
equivalent to the roughness parameter used by other authors, e.g., [Shcherbakov et al., 2006a, 111 
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2006b; Magee et al., 2014]. Regarding the shape parameter, when 𝜂 = 1, the Weibull function 112 
reduces to the Cox-Munk function. Lower values of 𝜂 produce more pronounced peaks close to 113 
𝑟 = 0 and a slower tail-off at higher 𝑟 values. The best value for 𝜂 is estimated by visual 114 
comparison to Weibull PDFs with a range of 𝜂.  115 
 116 
  117 
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3 Results 118 
 119 
3.1 Characterization of SEM response to ice surface topography 120 
 121 
 To determine the three-dimensional structure of an object such as an ice crystal from SEM 122 
images, it is necessary to know how the local surface topography of a material relates to the 123 
backscattered electron signal recorded at detectors 𝐴 − 𝐷. Based on the light-scattering model 124 
presented in Blinn [1977], we predicted that this response would depend on projections 𝑛 ∙ 𝑏 and 125 
𝑛 ∙ 𝑑O, where 𝑛 is a surface normal vector, 𝑑O points from the surface to detector 𝐼, and 𝑏 is the 126 
beam vector (see Fig. 3.1).  127 
 128 
                               (a) 

 
                                (b) 

 
Figure 3.1. Vectors pertaining to the geometry of the stage. Detector and beam 
source vectors (𝑑O and 𝑏) have unit length, while the surface normal (𝑛) is defined 
to have components (𝑁R, 𝑁T, 1). 
 129 
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We therefore examined the dependence of backscattered intensity on these projections. For 130 
the crystal shown in the inset to Fig. 3.2, for example, we identified prismatic facets a and b, and 131 
drew projected vectors 𝑎, 𝑏, and 𝑐 (the latter corresponding to the crystallographic c-axis). These 132 
vectors were then used to compute a true (three-dimensional) surface normal vector, 𝑛, for each 133 
facet, by a procedure described in Appendix A1. Projections 𝑛 ∙ 𝑑O and 𝑛 ∙ 𝑏 were computed for 134 
each facet/detector combination, and the backscattered intensities recorded. This process was 135 
repeated over a series of micrographs taken in 5° increments from 0° to 15° stage tilt angles. 136 
Examination of the resulting dataset showed that nearly all the variability in backscattered 137 
intensity depended on the difference between projections, 𝑛 ∙ 𝑑O − 𝑏 . Therefore, we define a 138 
backscattered intensity response variable, 139 
 140 

𝑠O =
0
|f|
𝑛 ∙ 𝑑O − 𝑏                (3.1) 141 

 142 
and graph the resulting locus of points, Fig. 3.2. The figure suggests a linear dependence, 143 
 144 

𝐹O(𝑠O) = 𝑚O𝑠O + 𝑏O               (3.2)	145 
 146 

where 𝐼 specifies a detector (A-D). Parameters 𝑚O and 𝑏O are therefore empirical parameters 147 
determined for any given crystal. From a physical standpoint, 𝑏O may be thought of as a 148 
background brightness, and 𝑚O a sensitivity. 𝐹O, like 𝑐O, is given in BIU, defined above. 149 
 150 

 151 
Figure 3.2. Examination of backscatter intensity dependence on the response variable,	𝑠O. The 152 
corresponding crystal is shown in the inset, at an initial orientation of the SEM imaging stage; 153 
the stage was subsequently tilted along the horizontal axis by 5°, 10°, and 15° to obtain a total of 154 
four points for each facet/detector combination. Linear best fits yield parameters 𝑚O and 𝑏O for 155 
each detector I.  156 
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While the foregoing establishes the form of the backscattered intensity response function, as 157 
a practical matter we must parameterize the function for each scenario in the SEM viewing 158 
window. This is because parameters 𝑚O and 𝑏O vary somewhat from crystal to crystal, due to the 159 
presence of nearby crystals that influence the path of backscattered electrons as they travel from 160 
crystal to detector. It is cumbersome, however, to use the stage-rotation method described above 161 
for each new scenario. Instead, we chose crystals that exhibited three smooth faceted surfaces of 162 
known orientation, and used backscattered intensities from a single stage orientation for 163 
calibration. For example, for crystal 2016-06-30_ice4_full2 displayed in Fig. 3.3a, we drew 164 
projected vectors 𝑎, 𝑏, and 𝑐, and calculated surface normal vectors 𝑛∗ and 𝑛x of the 165 
corresponding prismatic facets. In addition, the normal vector to an adjacent pyramidal facet, 166 
designated 𝑛1, is obtained by rotating 𝑛x by 28° along 𝑏. Three backscattered intensities, 167 
obtained by averaging brightness values from rectangular segments on the corresponding facets, 168 
are also computed. This procedure yields three values of backscattered intensity as a function 169 
response variable,	𝑠O, for each detector, from which parameters 𝑚O and 𝑏O may be analyzed by a 170 
best-fit least-squared criterion, as shown in Fig. 3.2b for crystal 2016-06-30_ice4_full2. 171 
Parameterizations for this and other crystals are tabulated in Table S1 of Supplementary 172 
Information.  173 

 174 
(a)  (b) 

  
Figure 3.3. Response function calibration. (a) SEM image of crystal 2016-06-30_ice4, grown 
and imaged at −36°𝐶. Calibration areas are indicated in boxes: prismatic areas ‘*’ and ‘x’, and 
pyramidal area ‘+’. Axes show crystal alignment. (b) Observed backscattered intensities, with 
symbols ‘*’, ‘x’, and ‘+’ referring to boxed areas in (a). Lines are based on a best-fit least-
squared criterion for each detector. 
 175 
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3.2 Formulation of GNBF inversion for retrieving surface heights from SEM micrographs 178 
 179 

With a parameterized response function in hand, the next step is to formulate an algorithm to 180 
retrieve surface heights from SEM images. We seek an algorithm that yields a global solution 181 
while minimizing the effects of noise. The algorithm applied here is Gauss-Newton in a 182 
Bayesian framework (GNBF inversion), which is designed to optimize such properties [Rodgers, 183 
2000]. GNBF inversion is developed below in the context of Fig. 3.1b, a 3x3 height grid in 184 
which backscattered intensities are understood to originate from four triangular “pixels” (each 185 
received by four detectors). Generalization to larger image grids is straightforward. An 186 
analogous one-dimensional development is given in Appendix A2.  187 

 188 
Surface heights displayed in Fig. 3.1b are specified by an 8×1 matrix as 189 

 190 

𝐙 =
𝑍 1
⋮

𝑍 8
 .                 (3.3) 191 

 192 
Normal surface vector components (in x- and y-directions) are specified by 4×1 matrices 193 
 194 

𝐍R =
𝑁R[𝑖]
⋮

𝑁R[𝑙]
,   𝐍T =

𝑁T[𝑖]
⋮

𝑁T[𝑙]
             (3.4) 195 

 196 
which are combined into a single 8×1 matrix  197 
 198 

𝐍 =
𝐍R
𝐍T

.                  (3.5) 199 

 200 
Observed backscattered intensities at a given detector I are given by the 4×1 matrix 201 
 202 

𝐜O =
𝑐O[𝑖]
⋮

𝑐O[𝑙]
                 (3.6) 203 

 204 
which are combined (using four detectors) into the 16×1 matrix 205 
 206 

𝐜 =

𝐜W
𝐜X
𝐜Y
𝐜Z

.                  (3.7) 207 

 208 
Next we define a 4×4 diagonal matrix that contains the dependence of the backscatter response 209 
function on x-direction gradients 210 
 211 
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𝐊O,R =

��[�]
��4 �6

0 0

0 ⋱ ⋮
0 … ���[�]

��4 �6

            (3.8) 212 

 213 
and y-direction gradients 214 
 215 

𝐊O,T =

��[�]
��6 �4

0 0

0 ⋱ ⋮
0 … ��[�]

��6 �4

            (3.9) 216 

 217 
and combine them into a 4×8 matrix 218 
 219 

𝐊RT = 𝐊O,R	𝐊O,T .                (3.10) 220 
 221 
Variations in the observed intensity at all four detectors can now be expressed as a function of 222 
variations in the surface normal x- and y-components according to 223 
 224 

𝛿𝐜 = 𝐊RT𝛿𝐍.                 (3.11) 225 
  226 
Surface normal components can be obtained from surface heights according to  227 
 228 

𝐍 = 𝐌RT𝐙                  (3.12) 229 
 230 
where Mxy	is defined by 231 
 232 

𝐌RT =
𝐌R
𝐌T

                  (3.13) 233 

 234 
in which Mx and My are gradient operator matrices in the x- and y-directions; these are given 235 
explicitly for the one-dimensional case in Appendix A2. We next shift the variation operator (𝛿) 236 
to the right, giving 237 
 238 

𝛿𝐜 = (𝐊RT𝐌RT)𝛿𝐙               (3.14) 239 
 240 
where the quantity in parentheses is a 16×8 matrix. It bears noting that this shifting is a key part 241 
of the development, as doing so builds continuity of the surface into the retrieval algorithm.  242 
 243 

Equation 3.14 represents an overdetermined problem in which sixteen known backscattered 244 
intensities contained in c are available to infer eight unknown heights contained in Z. Larger 245 
surfaces are formulated in a similar fashion, but always in such a way that the number of 246 
observations (length of c) is greater the number of unknown heights (length of Z).  247 
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 248 
We are now prepared to apply GNBF inversion to the problem. Conventionally, the quantity 249 

in parenthesis in Eq. 3.14 is described as a kernel  250 
 251 

𝐊 =	𝐊RT𝐌RT                 (3.15) 252 
 253 
so the variation matrix equation becomes 254 
 255 

𝛿𝐜 = 𝐊𝛿𝐙.                  (3.16) 256 
 257 
The solution is iterative, and can be developed by expressing the variation in surface heights as  258 
 259 

𝛿𝐙 = 𝐙f10 − 𝐙f                (3.17)  260 
 261 
where Zn is a previously-obtained (or initial) vector of surface heights, and Zn+1 is the result of 262 
the next iteration. Using Zn, we calculate cn =FI (Zn) for each detector, and express the variation 263 
in c as 264 
 265 

𝛿𝐜 = 𝐜��� − 𝐜f                (3.18) 266 
 267 
where cobs is a vector of observed backscattered intensities. The resulting GNBF inversion 268 
formula for iterating these solutions is given by  269 

 270 
𝐙f10 = 𝐙� + S�B0 +Kf

� S�B0Kf
B0

Kf
� S�B0 𝐜��� − 𝐜f +Kf 𝐙f − 𝐙�  (3.19) 271 

 272 
where Sa is a diagonal matrix whose elements equal the square of the estimated standard 273 
deviation in the heights, Z; we typically specify this standard deviation as ~10	𝜇m in our 274 
retrievals. Similarly, Se is a diagonal matrix whose elements equal the square of the estimated 275 
uncertainty in the observed backscattered intensity. We typically specify this uncertainty as 276 
~2 %. (A sensitivity analysis studying the effect of varying 𝑺� and 𝑺� is described below, in 277 
Section 4.) We use a priori values Za = 0, and an initial solution Zn=0 = 0. Because Eq. 3.19 is 278 
applied iteratively, it is not necessary for the forward model, FI (Zn), to be linear, but rather only 279 
that it be weakly nonlinear and characterized by an error contour surface with a single minimum. 280 
We find that only three iterations are needed for convergence in most cases. 281 
 282 

In practice, application of the GNBF inversion algorithm is limited by the size of the kernel, 283 
K. The number of elements in K increases as the square of the number of pixels, which itself 284 
scales as the square of the length of a side of a roughly square subset (or “panel”) of an SEM 285 
image. On a laptop computer, we find that GNBF inversion is limited to panels up to about 286 
50×50 pixels. With the help of a graphical processing unit, we can increase this to panels of 287 
about 100×100 pixels. Analysis of larger subsets of a given SEM image is done by patching 288 
together GNBF-derived panels side by side, a composite reconstruction. Discontinuities in 289 
composite reconstructions, where panels are adjacent to one another, are therefore often evident.  290 
 291 

GNBF inversion is validated by comparing retrieved surface angles of a smooth crystal to 292 
known crystal facet orientations. For crystal 2016-06-30_ice4, for example, we retrieve the 293 
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surface shown in Fig. 3.4. The retrieved angle between prismatic facets Pr1 and Pr2 is 52°, a 294 
13% error from the presumed angle of 60°.  295 
 296 
 297 

(a) (b)                       (c)  

         
 
Figure 3.4. Retrieval validation. (a) SEM image of an expanded view of Crystal 2016-06-
30_ice4, grown and imaged at −36°𝐶 showing a composite grid with prismatic (Pr1 and Pr2), 
pyramidal (Py1), and secondary pyramidal (Py2) facets annotated. (b) Retrieved surface height, 
with vertical scale exaggerated; the retrieved angle between Pr1 and Pr2 is 52°. (c) Comparison 
of observed and forward-modeled B-detector images of the grid. All distances are in 
micrometers. Related animation S1 is available in the Supplementary Information. 
 298 
3.3 Calculation of roughness statistics 299 
 300 

In previous work [Pfalzgraff et al., 2010], the authors described a distinction between ice 301 
crystal roughness associated with ablation vs growth. Here we describe our efforts to quantify 302 
this distinction. Crystals were grown and calibrated (i.e., values of 𝑚O and 𝑏O were determined) at 303 
a temperature of −36	℃ and a chamber pressure of 50 Pa. Growth scenarios presented below 304 
were obtained by monitoring crystals over a period of a few minutes as they continued to grow at 305 
temperatures below −33	℃. Ablation scenarios were similarly obtained, but by raising the 306 
temperature of the Peltier cooling element to −32	℃, which is just above the equilibrium 307 
temperature, or higher. Surfaces were then retrieved using GNBF inversion using values of 𝑚O 308 
and 𝑏O obtained for that crystal, and characterized in terms of roughness according to the 309 
methods described in Section 2. 310 
 311 
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Figure 3.5 shows growth roughness on crystal 2016-06-30_ice4 after several minutes at a 313 
temperature of −33	℃. An SEM image from detector A is shown in Fig. 3.5a, in which 314 
azimuthally anisotropic roughness can be seen as near-vertical trenches in the image. A 315 
horizontal intersection between two prismatic facets occurs in this field of view, but it is scarcely 316 
visible by the A detector (it is better seen by the B and D detectors, because of their orientation 317 
below and above this intersection). Regions to be reconstructed are indicated by the boxed 318 
segments. The A- and B-detector grids shown in Fig. 3.5b illustrate the different perspectives 319 
provided by each backscatter detector. The A-detector highlights the trench-like roughness 320 
feature, whereas the B-detector highlights the facet intersection. Figure 3.5c shows the surface 321 
heights retrieved using GNBF inversion, in which both the facet edge and the roughness are 322 
evident. The average roughness of this area is 𝑟 = 0.01 (equivalent to 𝜎 = 0.15). Figure 3.5d 323 
shows that a Cox-Munk distribution (𝜂 = 1) provides the best fit to the observed roughness 324 
distribution. 325 
 326 

(a) (b) 

            
(c)                                      (d) 

                  
Figure 3.5. Quantification of ablation roughness on crystal 2016-06-30_ice4, roughening case 
4.1.4. This crystal is the same as that appearing in Fig. 3.4, but after roughening was induced by 
raising the temperature to −33°𝐶. (a) SEM image of the crystal after roughening, expanded 
around the intersection between prismatic facets. The retrieval region is highlighted. (b) 
Observed and forward-modeled A- and B-detector grids. (c) Retrieved surface heights in the 
retrieval grid, vertical scale exaggerated. (d) Roughness distributions. Markers show PDFs of 
facet Pr1 of the grid shown in (a) (top six panels). Lines show Weibull distributions. Related 
animations S2 and S3 are available in the Supplementary Information. 
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 327 
We next examine a second case of growth roughness, on crystal 2016-06-30_ice5, also at 328 

−33	℃. Figure 3.6a shows an SEM image of the facet surface, with the region to be 329 
reconstructed indicated by boxes. Figure 3.6b shows an expanded view of the retrieved region, 330 
paired with the result of a forward model calculation based on the retrieved surface.  331 

 332 
                                   (a)                      (b) 

        
(c)                 (d) 

         
(e) 

 
Figure 3.6. Quantification of growth roughness on a prismatic facet of crystal 2016-06-30_ice5, 
at −33	℃. (a) SEM image with the retrieval region highlighted. (b) Observed and forward-
modeled images for detector C. (c) Retrieved surface heights with vertical scale exaggerated. (d) 
Roughness distributions. Lines show Weibull distributions. (e) Retrieved surface with equal 
vertical and horizontal scales. 
 333 
The reconstructed surface itself is shown in Fig. 3.6c, with the vertical scale exaggerated to 334 
highlight roughness features. Figure 3.6d shows experimental and Weibull PDFs. We find an 335 
average roughness of 𝑟 = .019 (𝜎 = .20), which is among the larger values we observe for 336 
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growth roughness. A slight shoulder peak is evident at 𝑟 = 0.065, which corresponds to a tilt 337 
angle of approximately 20°. A Cox-Munk PDF (𝜂 = 1) appears to fit the distribution better to 338 
the left of this shoulder, while a shape parameter of 𝜂 = 0.8 does better to the right. Figure 3.6e 339 
depicts the reconstructed surface with equal vertical and horizontal scales. 340 
 341 

We present in Fig. 3.7 our analysis of another ice crystal, this one growing at −36	℃. Figure 342 
3.7a suggests that a pyramidal facet located in the upper portion of the image is smooth, while 343 
the prismatic facet exhibits significant growth roughness. The reconstructed region includes the 344 
roughest part of the prismatic facet, with results shown in Fig. 3.7b. As expected, retrieved 345 
roughness features are clearly azimuthally anisotropic, although these features are less ordered 346 
than in the previous example. Figure 3.7c shows the corresponding roughness distribution 347 
(prismatic facet only), characterized by 𝑟 = 0.033 (𝜎 = 0.27). The shape of this distribution is 348 
best fit by 𝜂 = 0.9, with a shoulder once again evident. Figure 3.7d presents the three-349 
dimensional surface with equal vertical and horizontal scales. 350 
  351 

(a) (b) (c) 

   
(d) 

 
Figure 3.7. Quantification of growth roughness of crystal 2016-06-30_ice1, roughness case 1.2. 
growing at −36	℃. (a) SEM image of an intersection between the pyramidal (Py) and prismatic 
(Pr) facets. The retrieval region is highlighted. (b) Retrieved surface heights, vertical scale 
exaggerated. (c) Observed and Weibull PDFs characterizing the five lowest panels in the right-
hand side of the grid shown in (a). (d) Retrieved surface with equal vertical and horizontal scales. 

 352 
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Figure 3.8 displays results for the same crystal as in Fig. 3.7, but focusing on a different 355 
region of the prismatic facet. In terms of the symmetry of the roughening, much of the same 356 
conclusions hold for this roughening, although the depth of the roughening appears greater here 357 
(Fig. 3.8b). As Fig. 3.8c demonstrates, this region is distinguished by a marked bimodality in the 358 
shape of the roughness distribution appears: the pronounced shoulder peak is present at 𝑟 =359 
0.15, equivalent to a tilt angle of approximately 30°. 360 
 361 

(a) (b) (c) 
 

  
(d) 

 
Figure 3.8. Quantification of growth roughness of crystal 2016-06-30_ice1, 𝑇 = −36	℃. (a) 
SEM image with the retrieval region highlighted. (b) Surface heights plotted with vertical scale 
exaggerated. (c) Roughness statistics for the retrieval region. The arrow points to roughness 
value corresponding to a zenith angle of 30°. (d) Retrieved surface with equal horizontal and 
vertical scales. 
 362 
  363 
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Figure 3.9 explores roughness on a crystal that was first ablated by slowly reducing 364 
temperature to −28.5	℃, then regrown at −36	℃. The retrieval region, highlighted in Fig. 3.9a, 365 
is located where the pyramidal and rounded facet were evident while the crystal was growing, 366 
but after ablation and regrowth it cannot be assigned to any particular facet category. Figure 3.9b 367 
shows the reconstructed surface, in which the roughness appears azimuthally isotropic. Figure 368 
3.9c shows PDFs of this region along with Weibull functions. This case, and similar ones 369 
presented in Figs. S1 and S2 in Supplementary Information, indicate that isotropic roughness is 370 
best described by a Cox-Munk distribution.  371 
 372 

(a) (b) (c) 

   
(d) 

 
Figure 3.9. Quantification of isotropic roughness at −36	℃ (after ablation). (b) Retrieved 
surface heights plotted with vertical scale exaggerated. (c) Roughness statistics for the retrieval 
region. (d) Retrieved surface with equal vertical and horizontal scales. 

 373 
Figure 3.10 shows a series of surfaces captured at approximately 1	℃ intervals between 374 

−33	℃ and −28.5	℃. As the temperature increases into the ablation regime, roughness features 375 
grow deeper and wider. Between the temperatures of −33	℃ and −31	℃, this causes an increase 376 
in 𝑟  from 0.011 to 0.031. Above −29.5	℃, we observe a slight reduction in roughness, to 377 
𝑟 = 0.028 at −28.5	℃. Analysis of the lower facet of this crystal over approximately the same 378 

temperature range is presented in Fig. S3 of Supplementary Information, with similar results. 379 
  380 
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(a) 

   
(b) 

   
(c) 

   
(d) 

   
(e) 

    
Figure 3.10. Quantification of roughness on an ablating prismatic facet. (a) T = −33	℃; (b) T = 
−32	℃; (c) T = −32	℃; (d) T = −31	℃; and (e) T = −29.5	℃. 

 381 
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4 Discussion 382 
 383 
4.1 Sensitivity of retrieval to GNBF parameters 384 

 385 
Variances in the a priori heights, 𝑺�, and the variances in the measured backscattered 386 

intensities, 𝑺�, must be specified as part of the GNBF inversion. A sensitivity study was 387 
performed to estimate the influence of 𝑺� and 𝑺� on retrieved roughness statistics, as follows. 388 
From an SEM image, surface heights were retrieved for three different 𝑺� matrices. These were 389 
based on standard deviations of 0.030, 2.2, and 7.1 BIU. (Recall that the matrices 𝑺� and 𝑺� are 390 
diagonal with diagonal elements corresponding to the square of the standard deviation in BIU, 391 
for 𝑺�, and the square of the uncertainty in the a priori heights, for 𝑺�). Retrievals were 392 
performed for 𝑺� based on standard deviations in heights of 0.70, 3.2, and 17	𝜇m. The 393 
maximum difference in retrieved surface heights between each retrieval for this crystal case was 394 
0.2 𝜇m and the roughness statistics for 𝑟  agreed to two significant figures across all retrievals. 395 
Observations of other cases showed similar robustness to small variations of 𝑺� and 𝑺�. 396 

 397 
We also investigated the sensitivity of roughness to the grid size of retrieved segments. Two 398 

retrievals of an identical region on the crystal 2016-06-30_ice4 were performed, one using a 399 
single 90x90 grid and the other using nine 30x30 grids. The resulting mean roughness values 400 
differed on the order of 5%, with 𝑟 = 0.020 and 0.021, respectively. 401 
 402 

An important motivation for using the GNBF formalism for the inverse retrieval is that the 403 
retrieval finds the optimal solution within the solution region characterized by the uncertainties. 404 
This framework avoids the extreme sensitivity to noise that is “a common feature of exact 405 
solutions to retrieval problems” [Rodgers, 2000]. This is particularly important for acquiring 406 
roughness statistics because small-scale noise will increase 𝑟 . Qualitative inspection of results 407 
shows that forward-modeled images do indeed exhibit reduced small-scale pixel-scale variation 408 
in backscatter intensity compared to observations, as desired. 409 
 410 
4.2 Variation in response function parameters 411 
 412 

As described in Section 3, we calibrated the backscatter response parameters mI and bI for 413 
each detector and crystal, and used those parameters to retrieve surface heights of those crystals 414 
after roughening. We believe these parameters vary from detector to detector because of inherent 415 
differences in detector sensitivity. For example, Detector A generally records brighter 416 
backscattered intensities than the other detectors. It is unclear why, however, the backscatter 417 
response parameters should vary from scenario to scenario (i.e., from crystal to crystal). We 418 
speculate that detector sensitivity depends on the proximity of other ice crystals, which may 419 
create a lensing effect due to local variations in water vapor concentration. To minimize this 420 
possibility, we selected relatively isolated ice crystals for our analysis.  421 
 422 
4.3 Trends from roughness statistics 423 
 424 

Roughness statistics are summarized in Table 1. The naming convention for cases is as 425 
follows: the first number refers to crystal identity, second refers to the particular roughening 426 
scenario, and the third differentiates between different analyses of the same image. Regarding 427 
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the degree of roughening, we see that values of 𝑟  reach as high as 0.045 (𝜎 = 0.31). Regarding 428 
the shape parameter, we see that ablation roughening is best described by 𝜂 = 0.8, azimuthally 429 
isotropic roughening is characterized by 𝜂 = 1, and azimuthally anisotropic roughening in the 430 
growth regime ranges between 𝜂 = 0.8 and 𝜂 = 1. These observations suggest that remote 431 
sensing results may contain more facet-specific information, and information that allows one to 432 
distinguish growth from ablation conditions, than has been previously appreciated. 433 
 434 
Table 1. Roughness statistics for all crystals. Crystals at or below −33℃ are in the growth 435 
regime, and crystals above −33℃ are in the ablation regime. 436 
Crystal Roughness  

case 
Temperature (℃) 𝑟  𝜎 𝜂 

2016-08-26_ice1 1.3 −39 .005 .097 1.0 
2016-08-26_ice1 1.4 −39 .005 .101 1.0 
2016-08-26_ice2 2.6 −39 .018 .19 0.8 
2016-08-26_ice3 3.2 −39 .018 0.2 0.8 
2016-06-30_ice1 1.1.2 −36 .017 .188 0.8 
2016-06-30_ice1 1.2.1 −36 .033 .266 1.0 
2016-06-30_ice1 1.5 −36 .045 .31 n/a 
2016-06-30_ice1 1.4 −33 .017 .185 0.8 
2016-06-30_ice3 3.1.1 −33 .008 .123 1.0 
2016-06-30_ice4 4.1.4 −33 .011 .145 0.9 
2016-06-30_ice5 5.1 −33 .019 .20 1.0 
2016-06-30_ice8 8.1 −33 .005 .101 1.0 
2016-08-09_ice1 1.7 −33 .011 .15 1.0 
2016-08-09_ice1 1.8 −33 .020 .21 0.9 
2016-08-09_ice1 1.11 −32 .025 .23 0.8 
2016-08-09_ice1 1.12 −32 .025 .24 0.8 
2016-08-09_ice1 1.14 −32 .018 .19 0.8 
2016-08-09_ice1 1.15 −31 .031 .26 0.8 
2016-08-09_ice1 1.17 −31 .020 .21 0.8 
2016-08-09_ice1 1.19 −29.5 .030 .25 1.0 
2016-08-09_ice1 1.21 −29.5 .022 .22 0.8 
2016-08-09_ice1 1.24 −28.5 .028 .25 0.9 
2016-08-09_ice1 1.25 −28.5 .015 .17 0.8 
 437 
4.4 Relationship to previous results 438 
 439 

Our SEM results compare favorably to nephelometry results for natural ice crystals observed 440 
at South Pole Station [Shcherbakov et al., 2006a, 2006b], which report a similar degree of 441 
roughness as we retrieved, with 𝜎 in the range of 0.05-0.25. However, that study indicated values 442 
of 𝜂 between 0.73 and 0.77, lower than our values of 0.8 and above. Because our study focuses 443 
primarily on prismatic facets, the disagreement may be due to roughness effects from crystal 444 
regions not studied here, such as basal or rounded facets. It is also possible that remote-sensing 445 
retrievals interpret bimodal distributions such as that appearing in Fig. 3.6c for Weibull 446 
distributions with small 𝜂. More research into these possibilities is required to resolve these 447 
questions. 448 
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 449 
A distinct advantage of the present method over the method based on prismatic facet 450 

intersections described previously ([Neshyba et al., 2013]) is that it is less restrictive: one does 451 
not need to find cases in which roughness appears at these intersections, nor does one need to 452 
assume that such roughening is representative of facet interiors. Indeed, Magee et al. [2014] 453 
found that it was rare to find well-resolved roughness that intersected facet edges, and therefore 454 
could not obtain quantitative data on much of the roughness they observed. A second advantage 455 
is that the present method, in retrieving heights as a function of two horizontal dimensions, 456 
provides far more data, and therefore greatly increases confidence in the statistical properties of 457 
roughening. 458 

 459 
Magee et al. [2014] present evidence that roughness occurs on scales as small as the sub-460 

micron level, which is below the imaging resolution attainable by the SEM used for our study. 461 
Further study is necessary to elucidate the relative importance of mesoscale versus sub-micron 462 
scale roughness in relation to optical scattering. 463 
 464 

The method of retrieval via GNBF inversion developed in this paper can be applied to other 465 
materials for which quantitative data concerning surface structure is of interest. However, several 466 
conditions must be met by the material in question: it must be homogeneous, such that all 467 
variation in backscatter intensity is due to surface tilt, and it must be continuous so that gradients 468 
may be calculated at all points. The first condition may be circumvented by coating techniques 469 
such as sputtering with gold-palladium, if the desired features are large enough that they will not 470 
be obscured by the coating.  471 
 472 
5 Conclusions 473 
 474 

We have presented a method for retrieving quantitative, three-dimensional surface 475 
morphology of ice from SEM images. A key development is a novel functional form for 476 
backscattered electron density as a function of ice facet orientation. In combination with Gauss-477 
Newton inversion within a Bayesian framework, the method permits construction of three-478 
dimensional representations of the surface of rough ice at approximately micrometer resolution. 479 
Probability densities of surface roughness derived from these surfaces indicate values of 𝑟  as 480 
high as .045, and values of η ranging from 0.8 to 1.0. As growth roughening on prismatic facets 481 
becomes more pronounced, while lower values of η provide an approximate match to 482 
observations, it is clear that the Weibull form is qualitatively wrong: instead, a bimodal 483 
distribution appears, which cannot be described by the Weibull form. As ablation roughening 484 
becomes more pronounced, agreement between observed and best-fit Weibull distributions also 485 
deteriorates, but no obvious pattern is discernable in the discrepancy. We also find that 𝑟  486 
increases with higher temperature, but only to a point; at yet higher temperatures, we find 𝑟  487 
remains about the same. Altogether, these results suggest that roughening characteristics 488 
obtained by remote sensing of atmospheric ice clouds could be a richer source of information 489 
than has previously been appreciated. 490 
 491 
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Appendix A1. Solving for surface normals 502 
 503 
In reference to Fig. 3.2 or 3.3, the vectors are drawn in the x-y plane, and the following 504 
conditions are used to solve for their missing z-component: 505 
 506 

𝑎 ∙ 𝑐 = 0                  (A1.1) 507 
𝑏 ∙ 𝑐 = 0                  (A1.2) 508 
𝑎 ∙ 𝑏 = − 0

<
|𝑎||𝑏|                (A1.3) 509 

𝑎R< + 𝑎T< + 𝑎�< = 𝑎 <               (A1.4) 510 
𝑏R< + 𝑏T< + 𝑏�< = 𝑏 <               (A1.5) 511 
𝑐R< + 𝑐T< + 𝑐�< = 𝑐 <               (A1.6) 512 

 513 
Equations A1.1- A1.3 are consequences of the crystal geometry: the prismatic-prismatic edge (𝑐) 514 
must be perpendicular to the prismatic-pyramidal edges (𝑎 and 𝑏) and the internal angle between 515 
the prismatic facets (a and b) must be 120°. Equations A1.4- A1.6 establish that each vector’s 516 
components must correctly reproduce the magnitude of the vector. These conditions do not 517 
produce a single unique solution, so we must select the physically reasonable condition by 518 
requiring that all magnitudes be positive, and the z-component of 𝑏 be physically correct (e.g., 519 
negative when the b facet is tilted downward). Surface normal vectors for the * and + facets are 520 
calculated by 521 
 522 

𝑛∗ = 𝑎×𝑐                 (A1.7) 523 
𝑛1 = 𝑏×𝑐                 (A1.8) 524 

 525 
Appendix A2. GNBF inversion in one dimension 526 
 527 
We begin with the formalism associated with an idealized one-dimensional crystal, as displayed 528 
in Fig. A.1. Here we have three surface heights, labeled 1-3, and two microsurfaces adjoining 529 
them (each corresponding to a pixel in an SEM micrograph), labeled i and j. Normal vectors to 530 
these microsurfaces are defined to have components (𝑁R[𝑖],1) and (𝑁R[𝑗],1). 531 

 532 
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Figure A.1 Geometry of a one-dimensional retrieval grid. Normal vectors have components 
(𝑁R, 1). 
 533 
The three heights can be collected in a 3×1 matrix as 534 
 535 

𝐙 =
Z 1
Z 2
Z 3

.                 (A2.1) 536 

 537 
The two microsurfaces have normal vector x-components and detector intensities similarly 538 
specified, as 2×1 matrices 539 
 540 

𝐍R =
𝑁R[𝑖]
𝑁R[𝑗]

                 (A2.2) 541 

 542 
and 543 
 544 

𝐜� =
𝑐O[𝑖]
𝑐O[𝑗]

.                 (A2.3) 545 

 546 
where I stands for one of the detectors A-D. A small variation in the gradient gives rise to a 547 
variation in this detector intensity that can be expressed in matrix form as   548 
 549 

𝛿𝐜O = 𝐊O,Rδ𝐍R.                (A2.4) 550 
 551 
where we have defined the 2×2 diagonal matrix 552 
 553 

𝐊O,R =
���[�]
��4

0

0 ���[�]
��4

.               (A2.5) 554 

 555 
Thus we have an inversion problem in which the matrix 𝐊O,R must be inverted (or an 556 

equivalent procedure) in order to convert variations in observed backscattered intensities into 557 
variations in gradients. Our objective is a surface, 𝐙, however. It is preferable, therefore, to cast 558 

𝑛U⃗ [𝑖] 𝑛U⃗ [𝑗] 

1 

2 

3 
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the inversion problem in terms of an unknown surface directly. To do so, we relate normal vector 559 
x-components to surface heights according to  560 
 561 

𝐍R = 𝐌R𝐙                  (A2.6) 562 
 563 
where 𝐌R is a matrix corresponding to the gradient operator, 564 
 565 

𝐌R =
−1 1 0
0 −1 1 .               (A2.7) 566 

 567 
so that Eq. A2.4 can be written 568 
 569 

𝛿𝐜O = 𝐊O,R𝛿(𝐌R𝐙).               (A2.8) 570 
 571 
Now we reposition the variation operator (𝛿) to the right  572 
 573 

𝛿𝐌R(… ) → 𝐌R𝛿(… )               (A2.9) 574 
 575 
which converts the object of variation from gradients to surface heights. This yields  576 
 577 

𝛿𝐜O = (𝐊O,R𝐌R)𝛿𝐙                (A2.10) 578 
 579 
The elements in the quantity in parentheses can be computed using the forward model, 𝐹O. 580 
Solution of this equation is underdetermined, however, because we wish to obtain three unknown 581 
surface heights (contained in 𝐙) from two known observed backscattered intensities (contained in 582 
𝐜O). This deficiency can be remedied by the use of two detectors, A and B, forming the 4×2 583 
matrix 584 
 585 

𝐊R =
𝐊W,R
𝐊X,R

,                 (A2.11) 586 

 587 
We also define a matrix of observed backscattered intensities that includes detectors A and B, 588 
 589 

𝐜 =
𝐜W
𝐜X                   (A2.12) 590 

 591 
in which case the variation equation is written  592 
 593 

𝛿𝐜 = (𝐊R𝐌R)𝛿𝐙 (1-d surface)            (A2.13) 594 
 595 
where the quantity in parentheses is a 4×3 matrix. This equation therefore represents an 596 
overdetermined problem in which four known backscattered intensities (contained in 𝐜) are 597 
available to infer three unknown heights (contained in 𝐙). Equation A2.13 has the same form as 598 
Eq. 3.14 in Section 3, and can be developed to apply GNBF inversion in a similar way. 599 
 600 
  601 
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