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Introduction

Light-scattering properties of cirrus clouds influence the Earth’s radiative bugdet. The optical
properties of cirrus clouds are related to the surface mesoscopic (micrometer-scale) structure of the
ice crystals that comprise those clouds. The ice-crystal surface morphology is not static with time: an

ice crystal can grow, and eventually fall and ablate in underlying warm air.

Scanning Electron Microscope (SEM) experiments show:

1) Growing and ablating of ice crystals appears to occur in a distinctively facet-specific way.

2) Prismatic facets exhibit anisotropy growing and ablating by trans-prismatic strands[1].

Theoretical/computational work show:

Using molecular dynamics (MD) we want to investigate:

1) At temperature closer to melting one, a quasi liquid layer (QLL) would be expected to hide the underlying crystal
structure; how does prismatic surface diffusion anisotropy evolve with temperature?

3) Surface diffusivity is a key factor that governs ice crystal surface morphology.

4) Surface diffusivity on primary prismatic ice facet is anisotropic[2].

2) In the context of Arrhenius analysis, which is the activation energy barrier for the in-plane diffusion on the primary
prismatic facet?

Computational Methods

MD simulations performed with GROMACS 4.5.4 using the six site (NE6) water model [3].

Primary Prismatic Facet

Ice crystal of 2880 water molecules (5.4nm X 4.7 nm X 3.7 nm in x, y, z directions) using proton disordering algorithm.

12 bi-layers perpendicular to the primary prismatic facet.

The initial ice crystals were annealed from OK to the desire temperature (230, 240, 250, 260, 270, 278 K) in 1.5 ns using zero-pressure barostate.
Two primary prismatic (IOil) facet/vacuum interfaces were created enlarging the y-dimension of the box to 12 nm.

Production run of 100 ns, constant volume simulation (NVT) with dt=2 fs. First 4 ns of each trajectory were excluded to allow formation of ice-QLL.

Structure of the Primary Prismatic QLL

*For each water molecule we define an order parameter to
determine if it belongs to the liquid or solid phase using the four
nearest-neighbour oxygen.
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*Using the probability densities for bulk ice and bulk liquid water we
can define g, such that:
q>q, => Ice like water molecule;
q<q, => Liquid like water molecule.

*At the vacuum/ice interface,
liquid like layer (called QLL) is
present on the top of the ice
crystal.

*The thickness of the QLL
increases with the temperatur

*With increasing temperature,
water molecules from the inner
bi-layers start to contribute to the
formation of the ice-QLL.
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Anisotropy and Diffusion Activation Energy in the Primary Prismatic QLL
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*Upon increasing the temperature, more interfacial water
become mobile and contribute to the diffusion in the QLL.

*In the QLL, the facet-proximate diffusion may be expected to have an higher activation energy than the facet-distant diffusion because the vertical
motion takes a molecule from a more hydrated environment closer to the surface where fewer hydrogen bonding partners are available.

Conclusions

*The self-diffusion on ice surface occurs by significantly different mechanism compared to bulk self-diffusion in

supercooled water.

*At low temperature, the water molecules are exposed to the anisotropic underlying crystalline terrain leading to

anisotropic in-plane diffusion.

At high temperature, thick QLL leads to quasi 3-D liquid-like diffusivity.

*The Arrhenius analysis show an activation energy for in-plane diffusion in the QLL increasing with the temperature
as a result of a thicker QLL where molecules move vertical from more to less hydrogen bonding environment.
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