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Abstract We present a quasi-liquid mediated continuum model for ice growth consisting of partial
differential equations informed by molecular dynamics simulations. The main insight from molecular
dynamics is the appearance of periodic variations in the equilibrium vapor pressure and quasi-liquid
thickness of the ice/vapor interface. These variations are incorporated in the continuum model as subgrid
scale microsurfaces. We show that persistent faceted ice growth in the presence of inhomogeneities in the
ambient vapor field is due to a spontaneous narrowing of terraces at facet corners, which compensates
for higher ambient water vapor density via feedback between surface supersaturation and quasi-liquid
thickness. We argue that this emergent behavior has the mathematical structure of a stable limit cycle and
characterize its robustness in terms of ranges of parameters that support it. Because the model is relevant in
the high-surface-coverage regime, it serves as a useful complement to the Burton-Cabrera-Frank framework.
Quantitative aspects and limitations of the model are also discussed.

1. Introduction

Cirrus clouds play an important role in the Earth’s climate by absorbing and reflecting infrared and solar radia-
tion [Stephens et al., 1990; Lynch, 2002]. Those radiative properties, in turn, depend on the shape and surface
morphology of ice crystals as they grow and sublimate [Yang and Liou, 1998; Fu and Liou, 2008; Baran, 2009,
2015; Guignard et al., 2012; Schnaiter et al., 2016]. While considerable efforts have been directed at under-
standing vapor-deposited ice crystal growth and sublimation at the atomistic and mesoscopic (micrometer)
scales separately, a comprehensive theory that incorporates both scales has received much less attention. A
theory of faceted ice growth and sublimation that bridges these scales, with transparent connections to rele-
vant underlying atomistic processes, would allow us to better exploit our understanding at both scales and
bring us closer to a predictive theory of atmospherically relevant ice crystal dynamics and shape.

It has long been recognized that isolated and defect-free ice crystals grown from the vapor do so by steps
that originate at facet corners and propagate across an ice surface [Hallett, 1961; Hobbs and Scott, 1965a,
1965b; Hobbs, 2010]. Steps originate preferentially at facet corners because the concentration of water vapor
above a growing ice facet is typically inhomogeneous, being greater at corners than over facet centers. While
the inhomogeneity may be slight (water vapor moves through air much faster than surface-adsorbed water
molecules move across ice surfaces), even a small excess would build up over time and result in hollowed or
dendritic forms, all else equal. But faceted growth implies that all parts of a facet grow at the same rate.
Indeed, the ubiquity of faceted ice in the natural atmosphere and laboratory conditions suggests that faceted
growth is rather robust to deposition inhomogeneity.

Understanding the robustness of faceted ice growth therefore depends on a clear understanding of how
excess water vapor deposited at the ice/vapor interface is converted to ice. This interface has a complex
structure at atmospherically relevant temperatures, with a mobile quasi-liquid layer (QLL) transitioning to a
more fixed ice-like lattice underneath [see, e.g., Bartels-Rausch et al., 2012, 2014]. One way of characterizing
the process of vapor deposition is through a quantity called a “condensation coefficient” or an “accommoda-
tion coefficient.” Prior molecular dynamics (MD) [Neshyba et al., 2009] and experimental [Batista et al., 2005]
studies have shown that the surface accommodation coefficient at the ice/vapor interface, defined on a pico-
second time scale, is close to 1, but on the other hand, abundant experimental evidence shows that the bulk
accommodation coefficient, defined on a much longer time scale, can be much smaller [Magee et al., 2006;
Pratte et al., 2006; Bartels-Rausch et al., 2012]. These observations suggest that control of bulk accommodation

NESHYBA ET AL. CONTINUUM MODEL OF FACETED ICE DYNAMICS 14,035

PUBLICATIONS
Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE
10.1002/2016JD025458

Key Points:
• Molecular dynamics (MD) reveals
unsuspected properties of ice-vapor
interfaces over a cycle of ice layer
growth

• A new continuum model, based on
insights from MD, complements
existing theories of ice growth
from vapor

• Robustness of faceted ice growth from
vapor is traced to an underlying
mathematical structure, a stable
limit cycle

Supporting Information:
• Figure S1
• Movie S1
• Movie S2

Correspondence to:
S. Neshyba,
nesh@pugetsound.edu

Citation:
Neshyba, S., J. Adams, K. Reed,
P. M. Rowe, and I. Gladich (2016), A
quasi-liquid mediated continuum
model of faceted ice dynamics,
J. Geophys. Res. Atmos., 121,
14,035–14,055, doi:10.1002/
2016JD025458.

Received 3 JUN 2016
Accepted 4 NOV 2016
Accepted article online 7 NOV 2016
Published online 10 DEC 2016

©2016. American Geophysical Union.
All Rights Reserved.

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-8996
http://dx.doi.org/10.1002/2016JD025458
http://dx.doi.org/10.1002/2016JD025458
http://dx.doi.org/10.1002/2016JD025458
http://dx.doi.org/10.1002/2016JD025458
http://dx.doi.org/10.1002/2016JD025458
http://dx.doi.org/10.1002/2016JD025458
http://dx.doi.org/10.1002/2016JD025458
http://dx.doi.org/10.1002/2016JD025458
http://dx.doi.org/10.1002/2016JD025458
mailto:nesh@pugetsound.edu


lies not at the interface between the QLL and vapor but at the ice-like/quasi-liquid interface. Indeed, a two-
stage kinetic scheme embodying these ideas has been demonstrated to successfully account for accommo-
dationmeasurements across a wide range of temperatures [Kong, 2014; Kong et al., 2014]. Bolstering this view
is evidence that the development and propagation of steps is facet-specific; i.e., they are processes that are
sensitive to the symmetry of the underlying facet [Libbrecht, 2003a, 2003b, 2005; Libbrecht and Rickerby,
2013]; this implies microscopic influence over those processes. Considerable progress in understanding those
microscopic processes has been made in recent decades, thanks to increasingly sophisticated molecular
dynamics (MD) models of water and a variety of experimental approaches [Nada and van der Eerden, 2003;
Sadtchenko and Ewing, 2003; Bailey and Hallett, 2004, 2009; Sadtchenko et al., 2004; Abascal and Vega, 2005;
Pi et al., 2009; Sazaki et al., 2010; Vega et al., 2011].

Despite these advances, however, a missing connection is a coarse-grained, mesoscopic theory capable of
translating the above microscopic properties into mesoscopic ones (including the robustness of uniform
growth). Here we attempt to fill this gap by means of a reaction-diffusion system of partial differential
equations with dynamic vapor/quasi-liquid/ice partitioning. The quasi-liquid layer is modeled as a surface
density, or equivalent thickness; hence, it is a continuum model. Each grid point of the model spans
approximately the area of a single MD simulation, and subgrid processes are parameterized based on
results and insights derived from MD simulations. The formalism is similar to that of the classical Burton,
Cabrera, and Frank (BCF) framework in its view of crystal growth occurring on a staircase structure of steps
and terraces, upon which adatoms are represented as a surface density that obeys a diffusion equation
[Burton and Cabrera, 1949; Cabrera and Burton, 1949; Burton et al., 1951; Myers-Beaghton and Vvedensky,
1991]. It is distinct, however, in that BCF theory is based on an assumption that adsorbed molecules move
by hopping between adjacent lattice sites and is valid in a low surface-density regime (in the same way that
the ideal gas theory is valid in the limit of low gas density) [Patrone, 2013; Patrone et al., 2014], whereas the
present formalism occupies the opposite extreme, valid in a high-surface-density limit, in which quasi-liquid
covers the surface.

After constructing and parameterizing the continuum model, we carry out simulations of an initially flat,
one-dimensional ice surface, on a scale of 50μm, as it grows due to vapor deposition over the course of
a few seconds. We are particularly interested in mechanistic insights the model can provide as to how
uniform growth comes about, and what it can tell us about the robustness of such growth. For example,
the Nelson-Baker mechanism for faceted ice growth [Nelson and Baker, 1996] requires that the ice surface
evolve in such a way that steps grow closer together at facet centers. Is the present continuum model
consistent with this view? What additional insight can it provide? In essence, we hope that a model that
explains faceted growth in the presence of vapor inhomogeneity can give us deeper insight into mechanisms
of faceted growth.

This paper is organized as follows. In section 2 we describe our methodology and results from MD studies. In
section 3 we describe the differential equations that comprise the continuummodel, numerical strategies for
solving it, and results from numerical solutions. Sections 4 and 5 provide discussion and conclusions.

2. MD Simulations
2.1. MD Methodology

An initial proton-disordered ice Ih crystal (hereafter, slab) was built by using Buch’s algorithm [Buch et al.,
1998] and the NE6 water model [Nada and van der Eerden, 2003], composed of 2880 water molecules
corresponding to 20 layers in the x direction and 12 bilayers in the y and z directions (each; see Figure 1).

The initial physical dimensions of the simulation box were 4.49, 4.67, and 4.40 nm in the x, y, and z directions.
The initial ice crystal was prepared according to standard procedures reported in detail in Gladich et al. [2011,
2015]. A constant-pressure simulation (NpT) was performed at 0 bar for 2.5 ns during which the ice crystal was
heated linearly from 0 K to the target temperature of 260 K, which corresponds to about 29 K below the melt-
ing temperature of NE6 water [Abascal et al., 2006]. During the annealing process, a small time step of 0.1 fs
was used to avoid ice crystal disorder and melting as the temperature was increased. Afterward, the y dimen-
sion of the simulation box was enlarged to 14 nm, exposing the two primary prismatic planes. Finally, starting
from the ice/vapor slab, 20 ns of a constant volume (NVT) run was performed by using a time step of 2 fs at
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260 K, resulting in the formation of
quasi-liquid layers at each ice/vapor
interface after a few nanoseconds.
The procedure described above has
been shown to be a reliable protocol
for simulation of ice interfaces using
MD [Girardet and Toubin, 2001;
Muchová et al., 2011; Gladich and
Roeselová, 2012; Gladich et al., 2015].

TheMDrunswereperformedbyusing
GROMACS 5.0.7 [Abraham et al., 2015]
and a leapfrog integration method
[Hockney et al., 1974]. During the
annealing NpT procedure, the
Berendsen barostat [Berendsen et al.,
1984] with a coupling time of 2 ps
was used to relax the crystal at zero
pressure. In all the runs the tempera-
ture was kept constant at the desired
value by using a stochastic-velocity-

rescale thermostat [Bussi et al., 2007], which is known to conserve the right ensemble properties, with a time
constant of 0.1 ps. For nonbonded interactions (Coulombic and van der Waals) amongwater molecules, a cut-
off of 1 nmwas used, following the original parametrization for theNE6watermodel [Nada and van der Eerden,
2003]. The particlemesh Ewald scheme [Essmann et al., 1995]was employed to account for the long-rangepart
of the Coulombic interaction, using a tolerance of 10�5, fourth-order cubic interpolation, and 0.12 Fourier spa-
cing. GROMACS offers a dispersion correction for the truncated part of the Lennard-Jones potential used to
model the van der Waals interactions. However, due to inhomogeneities of the vacuum phase this correction
was not usedduring theNVT runswith the slab configuration. Finally, the geometry of thewatermoleculeswas
constrained during all MD runs by using the SETTLE algorithm [Miyamoto and Kollman, 1992]. This numerical
setup is similar to that used in similar studies by using NE6, which has been shown to be numerically stable
and conserve total energy [Gladich et al., 2011; Pfalzgraff et al., 2011; Gladich et al., 2015].

Also indicated in Figure 1 is an (arbitrary) reference line that allows us to specify the total number of surface
molecules, Ntot, that lie above it. In this paper, we will express this number in bilayer equivalents; for the
slab shown in Figure 1, two bilayers lie above the reference line, comprising a total of 480 molecules; hence,
NTOT ¼ 480

240 ¼ 2 bilayer equivalents. As described in detail in previous MD work [Gladich et al., 2011, 2015],

this number may be further subdivided into ice- and liquid-like fractions, Nice and NQLL, using a tetrahedral
order parameter. Briefly, for each water molecule (indexed by i), we calculate a tetrahedral order parameter
defined by [Errington and Debenedetti, 2001]

qi ¼ 1� 3
8

X3
j¼1

X4
k¼jþ1

cos θi;j;k
� �þ 1

3

� �2

; (1)

where indices j and k refer to oxygen atoms of nearest neighboring water molecules and the angle
between the oxygen atom of molecule i and these two neighbors is given by θi,j,k. This procedure yields
relatively high values of qi (close to 1) for water molecules belonging to the bulk ice phase and relatively
low values of qi for water molecules belonging to the liquid phase. Hence, a threshold, qt, is selected such
that for qi> qt a water molecule is assigned to the crystal ice phase, whereas for qi< qt the molecule is
identified as liquid-like. Consistent with previous work, we use the NE6 threshold value of qt= 0.9264
[Gladich et al., 2011]. This criterion counts all subtetrahedrally coordinated water molecules (i.e., all exposed
molecules) as liquid-like. As has been noted in the literature, this criterion could overestimate the number
of liquid-like molecules at temperatures at which the QLL becomes so thin that all the interfacial molecules
are frozen. However, this does not occur at the temperature used here (260 K), where the thickness of the
QLL is about 0.38 nm and all exposed molecules are found to be liquid-like [Gladich et al., 2011, 2015].

Figure 1. Initial configuration of the slab used in MD simulations, before
annealing. Coordinate x coincides with the vector perpendicular to the
secondary prismatic (11 2 0) facet. Coordinate y coincides with the vector
perpendicular to the prismatic (10 1 0) facet and has extra space introduced
between bilayers, creating an ice/vapor interface. Coordinate z coincides
with the vector perpendicular to the basal (0001) facet (i.e., the crystallo-
graphic c axis). The entire slab consists of 12 bilayers (a bilayer is indicated
with brackets) of 240 molecules in the y direction, for a total of 2880 mole-
cules. The dashed horizontal line marks an arbitrary zero point for counting
the number of molecules.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025458

NESHYBA ET AL. CONTINUUM MODEL OF FACETED ICE DYNAMICS 14,037



Much of the MD work carried out as part of this study was focused on characterizing the quasi-liquid
thickness as one adds or removes molecules from the ice/vapor interface. Our starting point for this is the
surface reported in previous studies, i.e., the simulated ice/vapor interface created by introducing a gap
between bilayers of a slab, as shown in Figure 1. We designate the microsurface that results after annealing
this configuration “Microsurface AB” (for annealed bilayer). Other microsurfaces are subsequently achieved
through (1) transferring quasi-liquid molecules from the top of the slab to the bottom and (2) equilibrating
the resulting surfaces, described next.

In transferring quasi-liquid molecules from the top of the slab to the bottom, we sought a method that would
minimize the perturbation to the slab. Themethod we used will be designated hereinafter as thermal transfer
through the periodic boundary (TTPB). In the TTPBmethod, we identify the topmost molecules of a given slab
and add a vertical (+y) velocity component just large enough to dislodge those molecules from the surface.
This guarantees that molecules removed from the top ice/vapor interface will be quasi-liquid, i.e., not part of
the underlying ice lattice. Thesemolecules subsequently travel at barely suprathermal speed through the ver-
tical (y coordinate) periodic boundary and land on the lower surface of the slab a few picoseconds later. As we
have argued elsewhere [Neshyba et al., 2009], only a few tens of picoseconds are required for molecules
deposited in this way onto the quasi-liquid layer to become indistinguishable, in terms of energy and orien-
tation, from other quasi-liquid molecules. An animated example is given in the supporting information.

To allow equilibration of the resulting surfaces, trajectories were continued for an additional few nanoseconds
after TTPB. As shownbelow, this timescale is sufficient topermit equilibrationof thequasi-liquid/iceportionsof
the newly populated slab surfaces. Since the total number of molecules in the slab is kept constant in this
method, a pair of microsurfaces result, one on the upper slab surface, from which molecules were (say)
removed, and another on the lower slab surface, to which molecules were added. It is important to note that
this procedure does not necessarily yield a top surface that contains less quasi-liquid or a bottom surface that
contains more, since post-TTPB equilibration allows the surface to redistribute ice and quasi-liquid: a given
microsurface could well equilibrate to amicrosurface with fewer quasi-liquidmolecules after addition ofmole-
cules, because of partial crystallization. Indeed, cyclic behavior is to be expected, in that after the transfer of a
full bilayer of molecules (in the present slab, 240 molecules), the original configuration of Microsurface AB on
both upper and lower slab surfaces must be reestablished.

Subsequent characterization of microsurfaces depended on the quantity desired. To characterize structural
properties of a given microsurface (e.g., the average number of quasi-liquid molecules of the microsurface),
the time scale was required to be long compared to the quasi-liquid/ice equilibration time scale (the latter
being a few nanoseconds) but short compared to the vaporization/sublimation time scale (hundreds of nano-
seconds; see discussion below), since the latter will tend to reestablish populations via spontaneous transfer
of molecules from one surface to the other through the periodic, gas-phase boundary. Hence, after a
microsurface had been established, the number of quasi-liquid and ice molecules was determined through
equation (1), averaging values every 20 ps over 15–20 ns MD simulation.

In order to characterize the equilibrium vapor pressure of microsurfaces, sublimation/deposition events
(i.e., spontaneous movement of water molecules from one slab surface to the other) were studied. These
events are known to occur according to Poissonian statistics [Neshyba et al., 2009], but at a rate of less than
one per nanosecond for slabs of the size and temperature used in this study. This rate is slow compared to the
quasi-liquid/ice equilibration time. Hence, our method for characterizing the equilibrium vapor pressure of
microsurfaces was to carry out runs of ~20 ns, at the conclusion of which we noted any accumulation of mole-
cules from one side of the slab to the other, and then restored the original pair of microsurfaces using the
TTPB method described above. The rate of sublimation from each surface is proportional to the kinetic velo-
city, vkin, which in turn is proportional to the equilibrium vapor pressure, P*, via the Hertz-Knudsen formula
[Saito, 1996],

vkin ¼ csat
csolid

ffiffiffiffiffiffiffiffiffi
kT
2πm

r
∝ P� (2)

where csolid is the density of ice, csat is the density of water vapor in equilibrium with the solid, and m is the
mass of a water molecule. It is worth noting that long trajectories (hundreds of nanoseconds) are required to
achieve statistically meaningful absolute values of the vapor pressure using this method, and even so the
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results can vary among representations of the water-water intermolecular potential and deviate from
experimental values by an order of magnitude [Neshyba et al., 2009]. Instead, in this work, we employ
equation (2) to determine relative supersaturations between microsurfaces of interest, using shorter
trajectories, mainly for the purpose of determining the sign of difference between them. This is developed
in context in the next section.

2.2. Results From MD

Figure 2a shows the slab with Microsurface AB on both upper and lower surfaces. Figure 2b results from
transferring 1/4 bilayer (~60 molecules) from the upper surface to the lower surface and allowing the system
to equilibrate for a few dozen nanoseconds. The lower surface of Figure 2a (Microsurface AB) is thereby
transformed into a surface hereinafter designated Microsurface I, while the upper microsurface (also AB) is
transformed into Microsurface II. Visual inspection suggests that Microsurface I is more ordered than
Microsurface AB, while Microsurface II is less ordered; we shall return to this point below. Figure 2c results
from transferring an additional 1/2 bilayer (~120 additional molecules) from the upper surface to the lower
surface and allowing the system to equilibrate again. The lower surface is thereby transformed from
Microsurface I to Microsurface II, and vice versa for the upper surface.

To visualize the evolution from Microsurface AB to Microsurfaces I and II, the number of molecules identified
as quasi-liquid as the surface equilibrates during the transformation corresponding to Figures 2a and 2b is
shown in Figure 3. The quasi-liquid of the lower side of the slab is initially (on a picosecond time scale) thicker
than that for Microsurface AB, because the added water molecules are initially accommodated into the quasi-
liquid. But on a nanosecond time scale, the quasi-liquid surface of this perturbed microsurface eventually
becomes thinner, eventually to end up as Microsurface I. In contrast, the quasi-liquid thickness of the upper
side of the slab is initially thinner than Microsurface AB (this thinning occurs on a time scale too short to be
captured by the figure), but on a nanosecond time scale becomes thicker than Microsurface AB. This side
eventually ends up as Microsurface II.

Figure 4 shows the results of multiple MD studies such as that which gave rise to Figure 3, with error bars
indicating one standard deviation. Each marker displays the result of a particular TTPB perturbation and
subsequent relaxation. The data suggest, visually, that NQLL is indeed a nonconstant function of Ntot. To test

this, we computed a reduced chi-square statistic, χ2red [Bevington and Robinson, 1993], under the assumption

Figure 2. (a) Slab as annealed from the initial configuration shown in Figure 1, at a temperature of 260 K. The upper and
lower bilayers are equivalent and labeled AB (for “annealed bilayer”). In this configuration, the upper slab is characterized
as having 252 quasi-liquid molecules, henceNQLL ¼ 252

240 ¼ 1:05 bilayer, while the lower slab has 246 quasi-liquid molecules,
hence NQLL ¼ 246

240 ¼ 1:03 bilayer. (b) After transferring 1/4 bilayer (~60 molecules) from the upper surface to the lower
surface and allowing to equilibrate for ~20 ns. The resulting surfaces are called Microsurface I (lower surface) and
Microsurface II (upper surface). (c) After transferring an additional 1/2 bilayer (~120 molecules) and equilibrating. The
resulting surfaces are reversed, since removal of a net 3/4 bilayer is numerically equivalent to addition of a net 1/4, and
vice versa.
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NQLL ¼ N, where N is the mean quasi-liquid thickness for the data set. Doing so produced χ2red ¼ 2:3, which

implies (to the extent that we consider χ2red > 1) that NQLL ¼ N is a poor description given the estimated

uncertainties. Alternatively, we can posit that the quasi-liquid depends sinusoidally on Ntot,

NQLL ¼ N � N� sin 2πNtotð Þ; (3)

where N* parameterizes the variation around the mean. In this parameterization, the quasi-liquid portions of
Microsurfaces I and II correspond to extreme thickness N∓N� , respectively, in a continuum of microsurfaces
that is periodic in Ntot. Two parameterizations of equation (3) are displayed in Figure 4. The solid line defines

the “reference system” for the conti-
nuum model studies used through-
out this paper; these parameters
were arrived at based on a fit to an
initial data set of MD results. The
dashed line corresponds to a case
for which parameters were optimized
to match subsequent observations
(i.e., the sinusoidal form matches the
mean of the observed data points,
and N* = 0.09 yields a minimum
mean-squared difference with
respect to observations). We obtain
in this way χ2red ¼ 1:05 for the opti-
mized sinusoidal function, which we
interpret to mean (since χ2red≈1) that
the extent of match between obser-
vations the sinusoidal model is in
accord with the error variance.

MD-determined rates of sublimation
were investigated in order to infer
the relative equilibrium vapor pres-
sures associated with microsurfaces,
as determined by the Hertz-Knudsen

Figure 3. Time evolution of microsurface AB (upper and lower surfaces of Figure 2a) toward Microsurfaces II and I
(upper and lower surfaces of Figure 2b, respectively), after transferring 50 molecules (slightly less than 1/4 bilayer) from
Microsurface AB, slab top, toMicrosurface AB, slab bottom, at time t = 0. The vertical axes correspond to the number of quasi-
liquid molecules as a fraction of a single bilayer (left axis label) and as a number (right axis label), i.e., NQLL(layer fraction)
=NQLL(number)/240. (a) Evolution in the first nanosecond, showing initial increases in both surfaces, but subsequent
decrease in the quasi-liquid coverage of Microsurface I. (b) Evolution over 20 ns. The black solid horizontal line indicates the
mean quasi-liquid thickness of Microsurface AB.

Figure 4. Dependence of QLL structure on total ice thickness determined in
this work. Markers show MD-derived quasi-liquid coverage, in bilayer
equivalents, with Ntot defined relative to the arbitrary zero indicated in
Figure 1. The error bars correspond to one standard deviation in time series
such as appeared in Figure 3. The continuous red line shows the sinusoidal
approximation, equation (3), parameterized according to the reference
system (N ¼ 1 and N* = 0.14). A dashed line shows the same functional form
after optimizing (N ¼ 1:04and N* = 0.09). Arrows point to Microsurfaces AB, I,
and II.
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formula (equation (2)). The relative difference between Microsurfaces I and II is here designated the threshold
supersaturation,

σo ¼ P�II � P�I
P�I

¼ vkin;MD;II � vkin;MD;I

vkin;MD;I
; (4)

where vkin,MD,I is the rate of departure of water molecules from Microsurface I to the vapor phase and similar
for vkin,MD,II. Supersaturation thresholds are displayed in Table 1, showing results after a slab initially annealed
as Microsurface AB was perturbed by TTPB movement of approximately 1/4 bilayer from the top to the
bottom of the slab, followed by a relaxation of 2–5 ns. Thus, after TTPB of exactly 1/4 bilayer (60) molecules,
the top of this slab approximates Microsurface II and the bottomMicrosurface I. Over the next 60 ns, sublima-
tion events from these surfaces were tracked, rebalancing every 20 ns to restore the desired deficit/excess
(also by TTPB). While these trajectories are too short to characterize a supersaturation threshold value with
high precision, the results strongly suggest a higher equilibrium vapor pressure for Microsurface II compared
to Microsurface I, hence a positive value of σo. This conclusion appears to hold even when the microsurfaces
are prepared with deficit/excess of slightly less than 1/4 of a bilayer imbalance (50 molecules instead of 60;
see the second half of Table 1).

Because of the aforementioned uncertainty in values of σo obtained in this way, the values used in the
continuum model were chosen according to other criteria, as described in the next section.

2.3. A Qualitative Growth Scenario Based on MD

On the basis of the foregoing, we can imagine that QLL structure and vapor pressure act in concert to yield
the following growth scenario. We shall assume for the moment that the ambient vapor pressure is large
enough to exceed the equilibrium vapor pressure of even the most volatile microsurface of the surface,
Microsurface II. Mathematically, this can be expressed as σI > σo, where σI is the supersaturation relative to
Microsurface I and σo is the threshold supersaturation defined in equation (4). It is also convenient (although
arbitrary) to imagine that the surface is initially structured as Microsurface AB, i.e., at the extreme left of
Figure 4. Because the ambient supersaturation relative to this microsurface is positive, net deposition from
the vapor phase will occur, causing an accumulation of water on the surface: an increase in Ntot. This moves
the state of the system to the right in Figure 4. We can imagine a transient increase in NQLL, but as quasi-
liquid/ice equilibration occurs (which will occur on a nanosecond time scale), we see from Figure 4 that
NQLL must decrease. That is, the deposition of water molecules atop Microsurface AB induces a rearrange-
ment in the quasi-liquid layer that leads to a partial crystallization and a net reduction in quasi-liquid. This
process also hastens the pace of growth, since the equilibrium vapor pressure of the newly formed, partially
crystalized microsurface is lower than that of Microsurface AB. This process continues until NQLL is at a mini-
mum; i.e., the surface arrives at Microsurface I in Figure 4. At this point, the rate of accumulation is fastest,
since the equilibrium vapor pressure of Microsurface I is the smallest of all the microsurfaces. Once Ntot

exceeds this point, continued accumulation of water from the vapor (increasing Ntot) takes the surface toward
Microsurface II, all the while also increasing NQLL and slowing the rate of growth. At Microsurface II, the rate of
accumulation is slowest, since the equilibrium vapor pressure of Microsurface II is the largest of all microsur-
faces. Subsequently, a situation similar to the initial one is resumed: continued net deposition from the vapor
phase will cause an increase in Ntot and (through partial crystallization) a decrease in NQLL. This will continue
until Microsurface AB is once again achieved and the growth cycle begins anew.

Table 1. Supersaturation Threshold Derived From MD-Derived Sublimation Events From a Slab Prepared by Perturbing
Annealed Microsurface AB by Approximately 1/4 Bilayer

TTPB Relative to Microsurface AB Time Interval (ns) vkin,MD,I (molecules) vkin,MD,II (molecules) σo (%)

�60 0–20 3 12 300
20–40 7 11 60
40–60 9 5 �55

0–60 (net) 19 28 47
�50 0–20 7 9 30

20–40 5 6 20
40–60 3 7 130

0–60 (net) 15 22 50
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Because of the key role played in the
scenario by the threshold supersa-
turation, σo, we have sought to
understand the mechanism by which
Microsurface I achieves a minimum
equilibrium vapor pressure and che-
mical potential. In other words, why
does Microsurface I exhibit enhanced
stability? Figure 5 shows a magnified,
stereoscopic view of the quasi-liquid
bilayer derived from an MD simula-
tion; it corresponds to the lower sur-
face of Figure 2b but with axes
inverted to display the Microsurface
I at the top of the figure. A row of
molecules occupying interstitial sites
is highlighted with glossy rendering.

There are 60 such sites available on a slab of the dimensions studied here, i.e., 1/4 bilayer. A plausible inter-
pretation therefore is that the stability of Microsurface I is due to the optimal occupation of available intersti-
tial sites offered by the underlying quasi-liquid bilayer. This interpretation must be regarded as tentative,
however, pending more detailed investigations.

Looking forward to the continuum model, it is important to note that the processes described in this section
take place on an MD time scale: equilibration of the quasi-liquid layer with the underlying ice lattice on the
order of a few nanoseconds, and equilibration of the quasi-liquid with the vapor on the order of a few
hundred nanoseconds. To this insight, we can add one more from prior work: MD simulations of ice slabs
have shown that lateral (in-plane) diffusion of quasi-liquid molecules at the ice slab/vapor interface scales
in accordance with Einstein’s mean-square-displacement formula (i.e., the mean square displacement is a
linear function of time) [Gladich et al., 2011]. A coarse-grained model, in contrast, by construction will employ
a much larger time step, on the order of microseconds. These observations, in turn, justify the coarse graining
of microsurface dynamics in which mesoscopic diffusion is described by a conventional diffusion equation,
and in which quasi-liquid/ice and quasi-liquid/vapor equilibration may be incorporated as parameterized,
effectively instantaneous processes. These ideas are developed formally in the next section.

3. The Continuum Model
3.1. Definition of the Continuum Model
3.1.1. Mathematical Structure of the Model
The continuum model developed here is a mesoscopic model that provides for diffusion of the quasi-liquid
part of the ice/vapor interface, source terms describing spatially inhomogeneous deposition of water from
the vapor phase, and dynamic partitioning of the ice and quasi-liquid components of the surface. These
features are implemented by

∂Ntot

∂t
¼ D∇2NQLL þ σmvkin; (5a)

∂NQLL

∂t
¼ D∇2NQLL þ σmvkinN’

QLL; (5b)

∂Nice

∂t
¼ σmvkin 1� N’

QLL

� �
; (5c)

where the dynamical variables of the model are Ntot, the total thickness of the ice/vapor interface (in bilayer
equivalents); NQLL, the thickness of the quasi-liquid part of the interface; and Nice, the thickness of the ice-like
part. Initial configurations were constant values across the facet, while “trajectories” consisted of the time
evolution of each, i.e., Ntot(x, t), NQLL(x, t), and Nice(x, t), where t specifies the time and x specifies the location
along the facet. A zero-dimensional version of the continuummodel is achieved setting D= 0, which removes
all position dependence; in the one-dimensional case, periodic Dirichlet boundary conditions were used.

Figure 5. Interstitial and lattice positions of the prismatic surface of ice,
seen from the x direction. (left) Stereo view of a snapshot of Microsurface
I. Glossy rendering indicates molecules occupying interstitial positions;
diffuse rendering indicates molecules occupying lattice positions. (right)
Profile showing orientation of interstitial admolecules, adapted from Gladich
et al. [2015], see also Figure S1.
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Remaining quantities appearing in equations (5a), (5b), (5c) are N’
QLL (the partial derivative of NQLL with

respect to Ntot), which controls the partitioning at the surface between quasi-liquid and ice-like fractions;
D, the surface self-diffusion coefficient of the ice/vapor interface; vkin, the kinetic growth velocity; and σm,
the microscopic supersaturation, which depends on NQLL, Nice, and Ntot.

Additional details about these are the following:

1. Ntot is defined relative to abaseline of ice below the surface. This baseline is arbitrary in termsof the number
of bilayers but otherwise conforms to the conventional definition of a bilayer, e.g., of a prismatic facet [Buch
et al., 1998; Petrenko and Whitworth, 1999; Shultz et al., 2014]. The baseline used here is shown in Figure 1.

2. NQLL relates to the atomistic level in that it corresponds to the thickness of liquid-like molecules defined
by the tetrahedral order parameter described above [Errington and Debenedetti, 2001; Gladich and
Roeselová, 2012]. It is parameterized here as equation (3), hence N’

QLL ¼ ∂NQLL Ntotð Þ
∂Ntot

¼ �2πN� cos 2πNtotð Þ.
3. Nice can be computed from equation (5c) simultaneously with equations (5a) and (5b), as a third dynami-

cal variable. However, it is more efficient to solve equations (5a) and (5b) first and compute Nice algebrai-
cally by using Ntot =NQLL +Nice.

4. D∇2(…), the diffusion operator appearing in the model, operates only on the thickness of the quasi-liquid
portion of the ice/vapor interface, in keeping with the notion that diffusion of the underlying ice is small in
comparison. We rely on temperature-dependent MD results for specification of D [Gladich et al., 2011].

5. σmvkin is the source term for the total ice/vapor interface, representing the deposition of water vapor. Its
components are as follows:

vkin, the kinetic growth velocity. vkin is temperature-dependent and can be calculated from the Hertz-
Knudsen formula (2).

σm, referred to here as the microscopic supersaturation to indicate its dependence on location (representing
spatial inhomogeneities of the vapor field) as well as the instantaneousmicroscopic structure of the ice/vapor
interface at that location. It is convenient to parametrize σm in terms of the current microsurface. Thus, it is
necessary to specify how surface properties depend on microsurfaces intermediate between Microsurfaces
I and II. The model characterizes this as a microscopic transition parameter,

m ≡
NQLL � N � N�� �

2N� : (6)

The microscopic transition parameter is an implicit function of position and time, since NQLL =NQLL(x, t). This
equation specifies that the surface state for which the quasi-liquid is thinnest (Microsurface I) is characterized
by m= 0, while the surface state for which the quasi-liquid is thickest (Microsurface II) is characterized by
m= 1. Quantities below that are functions of m are likewise implicit functions of position and time.

With the above definition, the equilibrium water vapor pressure associated with a given location on the facet,
a quantity we designate as P�m , depends linearly on the microscopic transition parameter according to

P�m ¼ P�I þm� P�II � P�I
� �

; (7)

so that P�m ¼ 0 ¼ P�I and P�m ¼ 1 ¼ P�II . Combining this equation with equation (4), we can rewrite the
equilibrium water vapor pressure as

P�m ¼ P�I � 1þmσoð Þ: (8)

We write the microscopic supersaturation as

σm ≡
Pamb;x � P�m

P�m
; (9)

where Pamb,x represents the ambient water vapor pressure at location x. Substituting equation (8), we have

σm ¼ Pamb;x � P�I � 1þmσoð Þ
P�I � 1þmσoð Þ : (10)

Using the above definitions, we have

σm ¼ σI �mσo
1þmσo

: (11)
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In order to calculate σm therefore we
need σo (an intrinsic function of the
ice vapor interface derived from MD
simulations, discussed in section 2),
m (obtained from the dynamical vari-
ables, as shown in equation (6)), and
σI (discussed next).

σI corresponds to the supersaturation
immediately above the ice surface,
often designated σsurf in the litera-
ture. We use the subscript “I” here to
emphasize that supersaturation must
be specified relative to the equili-
brium vapor pressure of some refer-
ence state, which is not unique at
the microscopic level: according to
the results of section 2, microsurfaces
vary in equilibrium vapor pressure
from a low of P�I to a high of P�II . The
choice of Microsurface I as this
reference,

σI ≡
Pamb;x � P�I

P�I
(12)

conforms to the convention that a surface supersaturation of zero coincides with the minimum ambient
supersaturation required to prevent net ice ablation. The spatial dependence of σI is functionalized as

σI xð Þ ¼ σI;corner � f inhomog xð Þ; (13)

where σI,corner, a scalar, specifies the supersaturation at the boundaries, or corners, of the simulation box, i.e.,
at x� L. The function finhomog(x) specifies the shape of the inhomogeneous water vapor field, and in general
is not known. One choice is finhomog(x) = fsinusoidal(x), an inhomogeneity field given by

f sinusoidal xð Þ ¼ 1� cr 1þ cos
x
L
π

� �h i
=2: (14)

Another is finhomog(x) = fparabolic(x), a field given by

f parabolic xð Þ ¼ cr
x
L

� �2
þ 1� crð Þ: (15)

In both expressions, cr is a parameter that controls the reduction of water vapor at facet center relative to
facet corners. For example, cr= 0.0025 corresponds to a reduction of 0.25% supersaturation at facet center
(see Figure 6; here L is 25 μm).
3.1.2. Model Input Parameters
Table 2 summarizes the parameters chosen as a focus for this study, which we will refer to as the
reference system.

The first two input parameters, σo and cr, were chosen iteratively, i.e., on the basis of model results. Thus, they
are described immediately following model output parameters. The rest of the parameters were obtained
from physical considerations or experiment. The value of the surface self-diffusion coefficient D was based
on prior MD simulations at this temperature [Gladich et al., 2011]. We chose a facet size of 50 μm, i.e.,
L=25 μm, as representative of cirrus ice crystals. At a temperature of 260 K, the kinetic velocity, vkin, was cho-
sen to conformwith the value obtained from the Hertz-Knutsen formula given in equation (2); a nominal layer
thickness of 0.3 nm was used to convert this value into a bilayer velocity. The precise value chosen for the
imposed supersaturation at the corners of the facet, σI,corner (corresponding to locations right facet corner
(RFC) and left facet corner (LFC) in Figure 6) was arbitrary, but it lies within the range of conditions for which

experimental results are available.N and N* are chosen based on the MD results described in section 2. Since

Figure 6. Imposed water vapor field, σI(x), for the reference system, showing
sinusoidal and parabolic shape functions for the water vapor inhomogeneity,
both parameterized by cr = 0.25% (see equations (13)–(15) in the text). LFC,
CTR, and RFC refer to left facet corner, facet center, and right facet corner,
respectively.
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initial model runs were carried out before the optimized parameterization shown in Figure 4 was available,
the standard model parameterization was used; however, our qualitative results and conclusions do not
depend substantially on this choice.
3.1.3. Model Output
Time-averaged values of the growth rate and the accommodation coefficient are the model outputs of
primary interest here. The growth rate at any given time and position in a simulation is given by

vx;t ¼ ∂Ntot

∂t
; (16)

which permits us to define a microscopic accommodation coefficient, αx,t, according to the usual formula for
the accommodation coefficient,

vx;t ¼ αx;tvkinσI; (17)

where σI was parametrized earlier.

Values of αx,t and vx,t depend on position and time, as indicated by the subscripts, but experimental analogs
of these quantities are generally given as time-averaged, steady state quantities. To average steady state
quantities from the model, it is usually sufficient to consider any single cycle of layer growth. These averages
will be indicated by the notation h…i t. For example, the average growth rate at a facet corner is designated
hvcorner,tit and is obtained by averaging equation (16) over a single cycle of steady state growth. Time-
averaged local supersaturation at a corner is similarly designated hσδ,corner,tit. The mean accommodation
coefficient at a corner is given by

αcorner;t
	 


t ¼
vcorner;t
	 


t

vkin σI;corner
; (18)

where σI,corner. is the supersaturation at the corner (a scalar) introduced in equation (12). Behavior of this
quantity as a function of supersaturation is of interest in relation to experimental results. This is because,
according to nucleation theory, layer growth governed by two-dimensional nucleation is expected to yield
an accommodation coefficient given by

αs ¼ ANuc exp �σo;Nuc=σI
� �

; (19)

where ANuc and σo,Nuc may be temperature- and facet-dependent but are not functions of the supersatura-
tion [Saito, 1996]. Indeed, linearity of ln(αs) as a function of 1/σI is taken as evidence that nucleation theory
governs the process of nucleation and allows the calculation of the edge free energy [Libbrecht, 2003b].
Although nucleation theory plays no part in the derivation of the atomistic/continuum model presented
here, it is regardless of interest to compare accommodation coefficients from the model (hαcorner,tit) to
experimental values (αs) as a way of gauging limitations of the model. Moreover, the physical interpretation
of σo,Nuc is that of a nucleation supersaturation threshold, manifested experimentally as a finite water vapor
supersaturation that must be imposed before growth is observed. It is therefore to be expected that it will be
related to the microscopic supersaturation, σo, used in the continuum model.

It is useful to have a proxy that indicates, in some way, the ease with which the system accomplishes uniform
growth. Here we have chosen the bilayer thickness difference between facet center and corner, designated NSS

at steady state, as such a proxy. A small value of NSS corresponds to a flatter facet andmore facile formation of
a steady state. We should add that even very large values of NSS could correspond to uniform growth, pro-
vided a steady state is achieved, but the resulting facet would appear distorted, i.e., as a hollowed facet.
3.1.4. Model Input Parameters Chosen Iteratively
Given the large uncertainties in MD-derived values of the threshold supersaturation, σo, described above, we treat
it here as an adjustable parameter of themodel. It turns out that, within themodel, the accommodation efficiency
depends mainly on σo. Therefore, the precise value of σo was chosen to yield a time-averaged accommodation

Table 2. Parameters Defining the Reference System of the Continuum Model

σo cr (%) D (μm2 μs� 1) L (μm) vkin (μm s� 1) vkin (bilayer μs� 1) σI,corner N bilayer N* bilayer finhomog(x)

0.19 0.25 2 × 10� 4 25 49 0.16 0.20 1 0.14 fsinusoidal(x)
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coefficient (hαcorner,tit) approximately
equal to the experimental value under
conditions specified by the other para-
meters of the standard system
[Libbrecht, 2003b].

A second parameter chosen itera-
tively was cr, which controls the inho-
mogeneity of the vapor field. We are
interested in the largest possible
value of cr that can be imposed for
which the model can still produce
numerically stable steady state solu-
tions. We discuss the boundary
between stable and unstable solu-
tions in the next section.

3.2. Methodology of Continuum
Model Calculations

All results presented here used a
simulation box containing Nx=500
cells spanning physical dimensions

x=� L to + L, with reflection symmetry at x=0, and periodic boundary conditions. The differential operator
was discretized to produce a set of Nx ordinary differential equations, which were then solved by the stiff
ordinary differential equation solver found in ODEPACK, accessed through python’s numpy package
[Hindmarsh, 1983; Oliphant, 2006]. Although ODEPACK adjusts the integration time step internally to achieve
a normalized tolerance of 1.5 × 10� 8, trajectory integration was interrupted every 5 μs to correct any numer-
ical drift away from equation (3), which in any case was quite small. For most simulations, a spatial step size of
0.1 μmwas used, the exception being trajectories intentionally designed to study the behavior of the system
as a function of the facet size. Initial configurations were a constant (arbitrary) number of ice-like layers, Nice,
preequilibrated with a quasi-liquid depth, NQLL, according to equation (3).

3.3. Insights From the Zero-Dimensional Case

We next examine solutions to the continuum model in which the independent variable, x, is a single point,
which we will refer to here as the zero-dimensional case. This is equivalent to setting D=0 in equations
(5a), 5b, 5c. Our purpose is to determine what insights we may derive from these results, before proceeding
to the one-dimensional model.

First, we consider in Figure 7 the time dependence of quasi-liquid thickness over two layer cycles of the refer-
ence system, along with two comparison systems with larger supersaturation. The horizontal axis has been
aligned and scaled according to t′= thvtit= t/τ, so that a complete a layer cycle occurs in the range t′=0 to
1 in each case. Actual periods are indicated in the legend. A striking feature of the curves in Figure 7 concerns
the structural differences among these curves. If we compare the solid curve to the dashed/dotted curves, we
see that the solid curve (which corresponds to a value σI approaching σo, the critical supersaturation) is rather
flat at the top of the graph, meaning it spends much of the time in a state close to Microsurface II. In contrast,
the dashed and dash-dotted curves (which correspond to values σI well in excess of σo) are flatter at the bot-
tom of the graph, meaning they spend relatively more time similar to Microsurface I.

As discussed above, steady state bulk accommodation coefficients, designated hαtit, are a measure of the effi-
ciency with which a growing ice surface captures water vapor and converts it to ice. These values, obtained
from averaging growth over a complete layer cycle, are displayed in Figure 8, note the vertical log scale.

It is clear from the figure that the trend in hαtit is qualitatively consistent with the expectations articulated
above, namely, that accommodation efficiency increases with increasing supersaturation. Also shown in
Figure 8 are experimental values, here designated as αs; these were generated by using equation (19) with
parameters reported by Libbrecht [2003b] for vapor-deposited ice growth of prismatic facts. We first note that

Figure 7. Time evolution of quasi-liquid thickness for the zero-dimensional
reference system (solid black curve), and two others parameterized with
larger surface supersaturation. Boxes refer to Microsurfaces I and II.
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the approximate agreement with
experiment that occurs at a submelt
temperature of � 30°C and ambient
supersaturation σI = 0.2, was engi-
neered by tuning the value of σo in
the reference system. Hence, the
proximity of the blue asterisk to
experimental curves cannot be con-
sidered a merit of the model, except
inasmuch as it was possible to tune
the model so that this agreement
could be achieved. More telling is
how the model behaves around this
point. While the locus of points pro-
duced by the model does not form
a straight line, there is an apparent
asymptotic linearity (at large supersa-
turation) in the model. The negative
slope of this asymptote (as shown
by the solid green line) is 0.15, which
is comparable to the range of

observed σo,Nuc values (0.04 to 0.17) for the experimental temperature range displayed ( � 20 to � 40°C).
Our conclusion is that σo is a microscopic analog to σo,Nuc, albeit an imperfect one in that σo represents a
sharp cutoff in the continuum model, whereas σo,Nuc does not.

3.4. Results From the One-Dimensional Continuum Model

We next turn to a consideration of solutions to the one-dimensional model (equations (5a), (5b), (5c)). Initial
configurations were specified as a constant (arbitrary) number of ice-like layers, Nice, preequilibrated with a
quasi-liquid depth, NQLL, according to equation (3). Figure 9 shows typical snapshots of the reference system
at different times. The left-hand side of the figure shows the initial configuration. The middle part shows the
system after enough time has evolved to generate three steps; these steps form initially at corners because
the imposed supersaturation is greater there. These steps are not static, but traverse across the face toward
the center on a time scale of hundreds of microseconds. The right-hand side of the figure shows the system
after a simulation time long enough for the system to arrive at steady state. Steps still propagate from corner
to center (see the supporting information for an animated version of these data), and the height of the sur-
face keeps growing, but now the overall curvature of the surface remains constant.

From graphics such as this, one can also infer a relationship between steps and terraces on the one hand, and
microscopic structure on the other. Since Microsurface I appears with a minimum quasi-liquid thickness, it is
evident that it occurs in these trajectories in the vicinity of steps. Likewise, since Microsurface II appears with a
maximum quasi-liquid thickness, it appears in these trajectories in the vicinity of terraces. Hence, steps are
surfaces with lower equilibrium vapor pressure and chemical potential, while terraces are surfaces with large
equilibrium vapor pressure and chemical potential. It is also clear from the figure that in all cases, the surface
spends more time as a terrace (hence, similar to Microsurface II) than as a step (similar to Microsurface I).
Lastly, we note that the stair-step pattern at steady state exhibits a distinct narrowing of terrace widths as
one proceeds from facet center out to facet corners.

Table 3 displays output parameters of this steady state. We see that the one-dimensional model grows more
slowly than the corresponding zero-dimensional model. The difference is nearly 3%, much greater than
reduction in surface supersaturation at facet center, cr (0.25%).

Figure 10 shows the properties of transient solutions as the system evolves toward a steady state. The system
parameters for this trajectory coincide with the reference system, with the exception that the supersatura-
tion, σI,corner, is slightly higher. The left-most part of the curve corresponds to the initial flat configuration, cor-
responding to Figure 9a. By the time Nice = 125 layers have formed, four steps have formed, corresponding to

Figure 8. Accommodation graph for ice. Time-averaged accommodation
coefficients, hαcorner,tit, of the steady state of the reference continuum
model (blue asterisk), extended over a range of supersaturations (blue circles).
Also shown are experimental values of the accommodation coefficient, αs, for
the prismatic facet over a range of submelt temperatures, obtained via
equation (19) [Libbrecht, 2003b].

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025458

NESHYBA ET AL. CONTINUUM MODEL OF FACETED ICE DYNAMICS 14,047



Figure 9b. By the time 400 ice layers have formed, the system has arrived at a steady state with nine layers.
This is slightly greater than the steady state of the reference system shown in Figure 9c because, with a higher
supersaturation, excess growth at corners is slightly greater compared to the reference system. The figure
strongly suggests that steady state solutions are a result of a locking-in mechanism.

It is worth emphasizing that this behavior, e.g., the spontaneous emergence of steady states, is not unusual
for nonlinear systems such as the model constructed here, often involving feedback. In the language of
nonlinear systems theory, such dynamic steady states are described as stable limit cycles, or attractors, i.e.,
a subset of the phase space of the system, toward which a range of initial conditions spontaneously evolve
[Nicolis et al., 1977; Ye and Lo, 1986; Curto and Itskov, 2008].

We address next the question of robustness of the cycle by examining the range of parameters that lead to
steady state solutions. Figure 11 examines variations in NSS that occur when parameters of the model are

changed away from the reference system. The abscissa, vkinL
2cβr σI;corner
D , is motivated by dimensional analysis, with

the exception of the exponent, β, of the inhomogeneity parameter, which cannot be deduced on dimen-
sional grounds. Qualitatively, these results show that uniform growth is promoted (as indicated by smaller
NSS) by large self-diffusion coefficient, slow growth rates (small kinetic velocity and supersaturation), and
small crystal size (small L). Lower values of NSS for the parabolic case indicate a greater readiness to form
steady states, compared to the sinusoidal case.

Quantitatively, the data indicate that the dependence of NSS is approximately consistent with the empirical
relationship

NSS≈M
vkinL2c

β
r σI;corner
D

þ B; (20)

where M, B, and β are empirically
determined from a least-squared fit
to the data for the sinusoidal and
parabolic vapor fields (separately).

Figure 9. Structure of the ice surface at (a) 0, (b) 23, and (c) 75ms after the beginning of a simulation of the standard system. Each panel runs from the left facet
corner (LFC), through the facet center (CTR), to the right facet corner (RFC). Ice thickness, Nice, is shown in black; total thickness, Ntot, overlaid in blue. The lower
blue curves show the quasi-liquid thickness alone. Ntrans is defined as the number of steps leading from facet center to facet corner at any given point in a simulation,
while NSS is this number at steady state. Here Figures 9a and 9b are characterized by Ntrans = 0 and Ntrans = 3. Since the system has reached steady state in Figure 9c,
NSS ≈ 8. An animated version of the steady state is supplied in the supporting information.

Table 3. Model Output Results for the Reference Steady State Solution

hvcorner,tit (μm/s) hvzero - order,tit (μm/s) hαcorner,tit NSS (bilayers)

1.85 1.90 0.19 8.2
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Parameters derived in this way are
M≈ 0.0027, B≈ 2.9 for the sinusoidal
case, and M≈ 0.0025, B≈ 1.6 for the
parabolic case. β = 0.65 for both cases.

Ranges of parameters contributing
to the variation in the figure are
shown in Table 4. It is instructive to
compare these ranges to conditions
under which faceted growth is
observed. The minimum diffusion
coefficient for which steady states
were found coincides approximately
with a submelt temperature � 39°C
for NE6 water [Gladich et al., 2011].
This is lower than the threshold
temperature for which quasi-liquid
coverage is one bilayer for the
prismatic facet of ice, � 35 °C
[Gladich et al., 2015]. Since larger D
facilitates faceted growth, we con-

clude that the range of diffusion coefficients supporting faceted growth spans the entire range over which
the continuum model is expected to apply, i.e., � 35 °C to melting. The range of crystal sizes, L, coincides
with typical cirrus cloud particles, although on the high end the model predicts that facets will give way to
unbound corner growth. A similar comment applies to the range of kinetic velocities, vkin. Regarding the
inhomogeneity parameter, cr, the maximum value seems rather small: when cr exceeds only 0.7%, trajec-
tories of the model become numerically unstable. Rudimentary analysis, employing the fact that the diffu-
sivity of water vapor through air is ~105 faster than that of quasi-liquid on ice surfaces, suggests cr< 1%
under typical atmospheric conditions, although this requires verification. Finally, we recognize that the sur-
face supersaturations (σI,corner) listed in Table 4 are much higher than occur in typical cirrus clouds, where
growth is typically diffusion-limited, although such conditions can be reached in even modestly low-
pressure laboratory conditions.

Figure 10. Time evolution of Ntrans, the transient difference in the number
of ice layers between facet corner and facet center (dashed black curve).
The solid green curve shows the slope of this curve. Each peak in the latter
signals the addition of one additional step across the facet.

Figure 11. Variation of NSS (ice bilayer difference between facet corner and center) with respect to variations in parameters
of the model. The legend indicates parameters allowed to deviate from the reference system. Symbol sizes represent
typical uncertainties of one standard deviation. The hollow symbols, star, and solid line correspond to the sinusoidal case.
The solid symbols (except the star) and dashed line refer to the parabolic case.
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3.5. Mechanism of Achieving Uniform Growth

In theone-dimensional system, the “problem”withmaintaininguniformgrowth in thepresenceofexcesswater
vaporover facet corners is that, absent somecompensatingmechanism,growthat cornerswill outpacegrowth
at facet center. While the results presented here constitute compelling evidence for the existence of a such a
mechanism (because steady state solutions exist), we have not probed the mechanism itself. One might ima-
gine that excess vapor deposition at a facet corner would lead to thicker quasi-liquid at corners, which would
then lead to enhanced diffusion, down-gradient, toward facet center. But this mechanism must be rejected
for the model developed here (and, we believe, in reality) because surface diffusion is too slow compared to
quasi-liquid/ice-like equilibration, which converts excess quasi-liquid to ice on a nanosecond time scale.

Instead, we seek a mechanism based on feedback. We propose a mechanism whereby diffusion at steady
state influences growth through its impact on the efficiency with which the surface captures water vapor:

1. Terraces become more narrow at facet corners, compared to facet centers.
2. Terrace narrowing leads to enhanced surface diffusion, and (indirectly) to a reduction in the efficiency of

vapor capture.

It follows from these steps that reduction in efficiency of vapor capture rate at corners compensates for the
excess growth due to the imposed inhomogeneity in water vapor. We shall take step 1 as an empirical
observation of the one-dimensional system: we observe that terraces become more narrow at facet corners
compared to facet centers. It remains therefore to demonstrate step 2.

To do so, we focus on a single terrace, similar in form to those appearing in the right-hand side of Figure 9, but
unaffected by diffusion. We do so by solving the zero-dimensional system for a given deposition rate, yielding
Ntot (t), NQLL(t), and Nice(t) over the course of a layer cycle, τ. These functions become initial conditions of a
one-dimensional system having D=0 and a terrace width w, spatially varying according to Ntot(x), NQLL(x),

and Nice(x), where x ¼ w
τ

� �
t . We then evaluate the change in the thickness of the ice/vapor interface,

δ(Ntot), that is due directly to the introduction of surface diffusion. This procedure is expressed as

δ Ntotð Þ ¼ δ D∇2NQLL
� � ¼ D

τ
w

� �2 ∂2NQLL

dt2
: (21)

Since NQLL is the solution to the zero-dimensional problem (or equivalently, the one-dimensional problem
with D=0), this equation expresses the effect of diffusion as a perturbation. Now we recast this expression

in terms of a scaled time, t′= t/τ so that ∂2 …ð Þ
dt2 ¼ ∂2 …ð Þ

dt′2
=τ2, giving

δ Ntotð Þ ¼ D
1
w

� �2 ∂2NQLL

∂t′2
: (22)

The effect described by equation (22) is not directly useful for the purpose of computing changes in growth,
because diffusion alone leads ultimately to only a redistribution of quasi-liquid. However, the efficiency with
which the surface captures water vapor does depend on the distribution of quasi-liquid. To estimate this indir-
ect effect, we compute the perturbation in the microscopic transition parameter,m (defined in equation (6)),
resulting from the introduction of diffusion,

δ mð Þ ¼ D
2N�

1
w

� �2 ∂2NQLL

∂t′2
; (23)

and hence the perturbation in the microscopic supersaturation, σm,

δ σmð Þ ¼ ∂σm
∂m

δ mð Þ ¼ �σo 1þ σI
1þmσoð Þ2 δ mð Þ; (24)

Table 4. Parameter Variations Consistent With Steady States of the ContinuumModel With Sinusoidal Inhomogeneity in
the Vapor Field

cr (%) D (μm2μs� 1) L (μm) vkin (μm s� 1) vkin (bilayer μs� 1) σI,corner

Minimum 0.15 0.75 × 10� 4 17.5 20 0.07 0.20
Maximum 0.7 6 × 10� 4 42.5 140 0.47 0.50
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where we have used equation (11) to
evaluate the partial derivative. The
resulting perturbation in the source
term of equation (5a), which deter-
mines the growth due to the capture
of water vapor, is therefore given by

δind Ntotð Þ ¼ δ σmvkinð Þ
¼ k F σIð Þ=w2; (25)

where we have collected constants as

k ≡
D σovkin
2N� ; (26)

and defined an indirect perturbation
function

F σIð Þ ≡� 1þ σI
1þmσoð Þ2

∂2NQLL

∂t′2
: (27)

We display the indirect perturbation function over a range of supersaturations in Figure 12, as a function of
the scaled time, t′ (which may also be thought of as a distance parameter spanning a complete
step/terrace/step interval). It is evident that the indirect effect of diffusion on vapor capture efficiency is
greatest at terrace boundaries, i.e., close to steps, and most pronounced for small supersaturation. The
legend of Figure 12 also shows mean values of F(σI) over the same interval, from which it is evident that
the indirect mechanism yields negative perturbations overall for all supersaturations. That is to say, our ana-
lysis predicts that diffusion causes an overall reduction in the steady state growth rate, via a modification in
the distribution of quasi-liquid.

Figure 13 extends this analysis to other supersaturations. It shows that the indirect effect of diffusion on
growth rate is to retard it for all supersaturations considered. When considered in the context of equation
(25), δind(Ntot), we see that this effect is greater for narrower terraces (because of the w2 in
the denominator).

The foregoing perturbation analysis can be confirmed numerically by using the method of matched asymp-
totic expansions [Verhulst, 2005], in which a subdomain is defined as a single terrace of width w, bounded by
a step on either side. Periodic boundary conditions are imposed across this subdomain. If we also impose a
constant deposition rate across the subdomain, we have a series of identical terraces. Using the D=0 solu-
tions for a single terrace as described above (Ntot(x), NQLL(x), and Nice(x)) as initial conditions, we then solve
the one-dimensional problem subject to different constraints, enabling us to evaluate the effects of varying
diffusion coefficient and terrace width. We find that growth rates are consistent with the foregoing analysis,
i.e., that systems with surface diffusion (D> 0) grow more slowly compared to systems without surface diffu-
sion (D= 0) and that this slowdown is greater when terraces are narrow. Figure S2 in the supporting informa-
tion shows a sample calculation.

In summary, we can understand the robustness of faceted growth in the presence of inhomogeneity in the
water vapor field to be a consequence of the stabilizing effect of surface diffusion. Terrace centers have
thicker quasi-liquid (hence are more similar to Microsurface II) compared to the steps that border them
(which are more similar to Microsurface I); this means that terrace centers are less efficient at capturing water
vapor compared to steps. But surface diffusion tends to redistribute quasi-liquid from regions where it is thick
to where it is thin. Diffusion therefore increases capture efficiency at terrace centers and decreases capture
efficiency at steps. The latter exceeds the former, resulting in a net slowdown in the vapor capture efficiency
of the terrace overall. This “diffusive slowdown” is greater for narrower terraces, because narrower terraces
have steeper spatial gradients of quasi-liquid thickness, all else equal. As mentioned above, steady state solu-
tions are characterized by a narrowing of terraces at facet corners. Corners are therefore subject to greater
diffusive slowdown, which compensates for the greater water vapor flux there, thereby enabling uniform
faceted growth.

Figure 12. Indirect perturbation functions, F(σI), equation (27), for the refer-
ence system and two other values of the supersaturation. The abscissa spans
a single steady state terrace. Terrace averages are indicated in the legend.
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4. Discussion
4.1. Properties of the Quasi-Liquid
Layer

Our results point to the importance,
in MD simulations, of paying atten-
tion to the way surfaces are prepared
for study. The focus on annealed
bilayers in prior MD studies (includ-
ing work by the present authors)
represents but one choice out of a
continuum of possibilities that arise
as ice growth proceeds. That choice,
we argue, should be informed by
the particular process of interest.

A separate issue concerns the func-
tional dependence of the thickness
of the QLL on Ntot chosen here

(equation (3)), and the linear dependence of equilibrium vapor pressure on that thickness (equation (7)).
These choices are not unique. A cursory investigation into the dynamics of the continuummodel using other
forms (but still satisfying the same periodicity and differentiability properties) revealed qualitatively similar
behaviors to those presented here. However, a comprehensive exploration of this dependence has yet to
be undertaken.

4.2. Why is Faceted Ice Growth Robust?

According to the Nelson-Baker (NB) mechanism [Nelson and Baker, 1996], uniform facet growth occurs
because the ice surface evolves in such a way that steps grow closer together at facet centers. On the premise
that ice formation at steps is more efficient than on terraces, reduced terrace widths at facet center compen-
sate for lower deposition rates there.

Our results show that uniform growth does occur, which implies that the interior of the facet is indeed char-
acterized by higher accommodation efficiency, and in this sense are consistent with the NB hypothesis.
However, our results indicate that this enhanced efficiency is not associated with reduced terrace width at
facet center, but rather the opposite: it relies fundamentally on a pattern of reduced terrace width at facet
corners, away from facet center. The surfaces of these narrower terraces, in turn, are subject to more diffusive
slowdown in growth rate via the dynamic linkage between quasi-liquid thickness and surface equilibrium
vapor pressure over the course of a cycle of layer growth. Our model, moreover, shows that the development
of this pattern is an emergent property of the system; i.e., solutions that characterize uniform growth can be
described as a stable limit cycle or attractor.

4.3. Comparisons With Other Ice Growth Models.

In contrast to the Burton-Cabrera-Frank framework [Cabrera and Burton, 1949], the continuum model
presented here is not valid in the low-surface-density regime, as it assumes complete coverage of the
ice/vapor surface with quasi-liquid. It is, rather, relevant in the temperature regime above this threshold,
which, based on prior work, occurs on the prismatic facet at around � 35°C [Gladich et al., 2011, 2015]. In
other words, the continuum model represents a high-temperature complement to BCF theory.

In contrast with three-dimensional cellular automata theories of ice crystal growth [Gravner and Griffeath,
2009], the model presented here is only one-dimensional. The model shares with automata theory the notion
that critical ingredients include a proper accounting of exchange between the ice and vapor phases, and the
exchange between quasi-liquid and ice-like molecules. The model complements these theories in certain
ways as well: its relationship to microscopic surface processes is more transparent, and it replicates faceted
growth, which has so far vexed three-dimensional cellular automata theories [Kelly and Boyer, 2014].

In general terms, our results support the notion of structure-dependent attachment kinetics as governed by
microscopic structure and dynamics [see Libbrecht, 2003a, 2003b, 2008]. In particular, our results affirm that

Figure 13. Mean values of indirect perturbation functions for the reference
system, equation (27), over a range of imposed supersaturations.
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key microscopic characteristics are the diffusivity of quasi-liquid and cyclical variations in the thickness and
equilibrium vapor pressure (a proxy for chemical potential) of quasi-liquid that occur as the surface adds
bilayers during growth.

4.4. Limitations

The chief physical shortcoming of the model lies in its inability to grow ice when the surface supersaturation
is smaller than the critical supersaturation. This emerges directly from our interpretation of the MD-derived
microsurfaces as unique states with definite properties. However, it is clear from the MD results presented
here that some quantities are inherently noisy. Figure 4, for example, indicates fluctuations in quasi-liquid
thickness on the order of 10% on a time scale of tens of nanoseconds, while Table 1 indicates fluctuations
in microsurface vapor pressure on a similar time scale. This means that some parameters of the continuum
model, e.g., the critical supersaturation, are subject to fluctuations that cannot be adequately represented
as simple averages. More broadly, our MD-derived results are based on a single model, NE6 water, whereas
it is known that different models express different structural properties of the ice/vapor interface. These
uncertainties are mitigated, however, by the observation that our qualitative results do not depend strongly
on the precise choice of key properties of the ice/vapor interface: we obtain steady state solutions for a wide
range of diffusion coefficients and critical supersaturations. A more sophisticated, probabilistic incorporation
of MD simulation results in the model could overcome such limitations, although this remains to be demon-
strated. A second limitation is numerical rather than physical and concerns the difficulty in disentangling
instabilities that arise for numerical reasons, from those that reflect physical sources of instability. While
the integration algorithm used here (described in section 3.2) is straightforward and easy to implement,
others are more stable and efficient and are worth exploring. Other limitations include that macroscopic
steps cannot form in our simulations given the initial (flat) configuration, and that as a one-dimensional
model, it cannot reproduce intrinsically two-dimensional spatial instabilities [Bales and Zangwill, 1990; Krug,
2005]. These extensions will be addressed in future work in this area.

5. Conclusions

We have presented a continuum model for ice growth consisting of partial differential equations, in which
grid points represent microsurfaces that undergo sub-grid-scale dynamic partitioning of the ice/vapor
interface into ice and quasi-liquid components. The model shares many features in common with classical
BCF theory but differs in that it is relevant in the high-surface-density admolecule regime characteristic of
warmer (T>� 35 °C) ice. Off-line MD simulations supply key atomistic insight into these microsurfaces,
namely, that the quasi-liquid exhibits periodic variability in thickness and equilibrium vapor pressure as
a function of total surface thickness. Numerical solutions of the continuum model show that these micro-
surfaces play a decisive role in the emergence and robustness of uniform crystal growth and lead to the
interpretation of uniform crystal growth as a stable limit cycle of the underlying nonlinear dynamics. A
mechanism is proposed in which a narrowing of terrace widths at facet corners plays a key role in making
uniform crystal growth possible.
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