The universal Lagrangian for one particle in a potential

James Evans®
Department of Physics, University of Puget Sound, Tacoma, Washington 98416

(Received 28 May 2002; accepted 6 November 2002

In a system consisting of a single particle in a potential, the classical adtiar is the number of
phase waves that pass through the moving particle, as the particle moves from its initial to its final
position. Thus the Lagrangian can be cast into the farmp(vy—v), wherevy andv, are the

group and phase velocities apds the momentum. €003 American Association of Physics Teachers.
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[. INTRODUCTION the particle velocity is equal to the group velocity of the de
Broglie waves, we may also regasg as the group velocity:
the subscripg will serve as a reminder. Now, for a particle

with a well-defined energy,

Hamilton’s principal function(now often called the ac-
tion),

5= ftzuqi opdt, @

ty

H=ho=pw/k=po,, (4)
plays an important role in both classical and quantum me

chanics. In classical mechanics, Hamilton’s principle, wherei =h/2a, his Planck’s constanty is the frequencyk

is the wave number, and, is the phase velocity of the de
Broglie waves associated with the particle. Using this substi-
tution for H, we obtain

to
5f L dt=0, 2
t

1
leads to the Euler—Lagrange equations of motion. In quan-
tum mechanicsS frequently appears as a phase, for example
in Wentzel-Kramers—Brillouin calculations and, more fun- . .
damentally, in Feynman’s sum over histories. However, it isgir;he"frir;(;r?oentum and particle velocity are parallel, &8}
not so clear just wha® represents. For example, in a classi- P
cal mechanical system, why shoufbe the time integral of

L=p-vy—pvg. 5)

the difference between the kinetic and potential energies? L=p(vg—vp). (6)
Moreover, the Lagrangians for different systems seem to
have nothing in common with one another. Thus the action becomes
The meaning of the action can be made clearer if we con-
nect the classical particle with its underlying de Broglie tp
phase waves. In all that follows the reader will be asked to S= ftl P(vg—vp)dt. @)

visualize the classical particle and its phase waves simulta-
neously. We shall see that, in a single-particle systgimas . . . .
a simple physical interpretation. Apart from a multiplicative NOW: (vg—vp)dtis the relative displacement of the particle
constantS is the number of phase waves that pass througf@nd its phase wave. Moreover=h/\, where\ is the par-
the moving particle between times andt,. Therefore, all ~ticle’s de Broglie wavelength. So we see that the action is
single-particle Lagrangians do share a common form. equal tqh times the num_ber of phase waves that.p_a.ss through

In Sec. I, we shall see how this theorem can be proventhe particle, as the particle moves between the initial and the
Section 11l will illustrate its utility in several applications. In final position. The term “action” therefore seems rather apt:
Sec. IV we shall see how to calculate the equations of motiof’€ action expresses a sort of interaction between the particle
directly from a new form of the Lagrangian. Finally, in Sec. @nd its phase wave.

V, we will see that this treatment can be extended to other Most treatments of the relation of the classical action to
kinds of waves. the quantum mechanical phase wave depend on the rather

daunting apparatus of the Hamilton—Jacobi equatiahjch
reflects the route followed historically by Schlinger. Equa-
tion (6) certainly does not replace these approaches, but it
does provide another perspective. The action of (Ejpis a
Lorentz invariant—a fact that usually is established by con-

[I. AN ALTERNATIVE FORM FOR THE SINGLE-
PARTICLE ACTION

The LagrangiarL(q;,v;) is a function of the coordinates

g; and their velocities;=dq; /dt. By a reversal of the usual
Legendre transformationl. may be calculated from the
HamiltonianH:

Lzzi pivgi—H=p~Vg—H, (€©))
wherev is the particle velocity and the indexlabels its
componentsp; is the momentum conjugate tp. Because
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siderations from relativity. But the Lorentz invariance of the
action becomes obvious when we see that the action is made
up of countable entities or events. A certain number of phase
waves pass through the particle as the particle moves from its
initial configuation to its final one. The number of these
events cannot depend upon the frame of reference of the
observer. Finally, let us note that E(), or Eq. (6) if the
potential is isotropic, provides a universal form of the single-
particle Lagrangian.
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[ll. EXAMPLES

A. Nonrelativistic particle in a scalar potential

As our first example, consider a nonrelativistic particle
with massm, momentump, and potential energy (x) that
varies with positiorx. The Lagrangian is

8

The group velocity iwy=p/m, and the phase velocity is

o H p u q Al cos8 _C d
=Ko 2mt p ©) /| vyt >

Thus the expression in parentheses in E).is equal to

(Ug_ Up) and the Lagrangian assumes the form of E—_‘q_z Fig. 1. Phase waves and group velocity in the presence of a vector potential.
The directionab of the wave vector need not coincide with the directian
of the particle velocity.

B. Relativistic particle in a scalar potential

As a second example of the utility of E@6) for the _ ) _
single-particle Lagrangian, let us see how it can be used t#1€ usual form of the Lagrangian for this system. There is
deduce the form of the relativistic Lagrangian for a particlenothing new heretl andL are related by the usual prescrip-
in a scalar potential. In many textbooks, this Lagrangian ig!on. ]
often just written down with the remark that it can be verified  To complete the demonstration, we must show that, even
by showing that its Euler—Lagrange equations are the corredtthe momentum is not in the direction of the group velocity,
equations of motioﬁ_We begin from the expressions for the the actionS still represents the number of phase waves that

relativistic momentunp and energyH: pass through the particle as the particle moves between its
initial and final positions. At the outset we recall that the
p=Mvgy, (10 phase velocity , is not a vectof. However, for the purpose
H=mc?y+U, (12) of visualizationy , may be regarded as directed aldnghat

2) o1 _ i is, in the direction ofp. So the Lagrangian could also be
Wherey=(1—vg/c ) andc is the vacuum speed of light. written as

Then, because,=H/p, Eq.(6) yields

L=p-(Vqg—vpk), 1
L=—m&(1-v¥/c)¥?-U, (12) PV upk) A
: I . ; .. Wherek is a unit vector in the direction .
This derivation may be the simplest possible way to JUStIny .
the form of the relativistic Lagrangian. Let ¢ denote the angle betweg@nandvy . In Fig. 1, thex

axis represents the direction of the parti¢éd group ve-
locity vy, while ab is the direction ofk or p.® The wave
C. Relativistic particle in an electromagnetic field fronts of the phase waves are at right anglek.thet phase
crest 0 pass through the particle at panat time 0. In the

If the vector potentialA is introduced, the canonical mo- L ;
mentump need not be parallel to the grouand particle short time interval, the phase crest advances a distarngte
and occupies positiobbd. Crest 0 now crosses the axis

velocity vy . In this case we must use the Lagrangian in the X : : .

. . (that is, the particle trajectoyyat pointd. Thus the node of
form of Eq. (5). Nevertheless, the actiofL dt continues to . intersection between the particle trajectory and the phase
be t.hT number of phase waves that pass through the moving,, e has moved a distanegt. (This is one reason why,
particle.

To demonstrate this, we first recall that Eg) gives the is not a vector: itsx “component” is longer than the vector
X X itself.) From Fig. 1 we see that
correct Lagrangian. Let a particle of massand chargee
move in an electromagnetic field characterized by the vector vy=uv,/cos6. (19
potentialA and scalar potentiab. The canonical momentum

b and energy are The distance between two successive crests of the phase

wave, measured along the particle trajectory,Nicosé.

e Now, in timet the particle moves a distanegt, advancing
p=mvgy+ EA’ (13)  fromatoc. The number of phase crests that pass through the
particle between time 0 and tintds therefore

H=mcy+ed. (14 cd (vn—vgt  (vp—vgcosh)t
If we substitute Eqs(13) and(14) into Eq. (3), we have N/cosf  Ncosd X (199

e
LZ(ngy-i- oA “Vg—(Mcy+ed) (15

p
=H(vp—vgcose)t:(pvp—p~vg)t/h. (19b

- M, 2c2_ v Apart from the factor ofh and the overall minus sign in-
mcy1 vglc e¢+cvg A (16) volved in the definition of the classical action, the right-hand
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side of Eq.(19b) is precisely the infinitesimal version of Eq. light in a gravitational field, the phase and group velocites
(1). So, even with the vector potential included, the action isare equal, so the action vanishes.

equal toh times the number of phase waves that pass through

the particle.

IV. CLASSICAL EQUATIONS OF MOTION

D. Relativistic particle in a strong gravitational field It might be thought that having the Lagrangian in the form

We have seen that for a particle moving at relativistic®f Ed: (5) or (6) would be of little utility for calculating
speeds in either a scalar or a vector potential, the classic§Auations of motion, because we would need to re-express
single-particle action is rigorously given by the number ofthe momentap; in terms of the coordinates and velocities
phase waves that pass through the moving particle. Thiggi- However, this is not the case. For we can operate di-
theorem continues to hold even in the curved space of gertectly with the Lagrangian in this form if we regard theas
eral relativity. As an example, consider a static, isotropiccoordinates, along with thg, . The generalized velocities are
gravitational field represented by the metric then thep; and thev ; (where, of courseugi:di).7We shall

ds?=02(x)(c?dt>—n?(x)|dx|?), (20)  regard the phase velocity, as a function of thej; andp;.
(But we could equally well consider, to be a function ofy;
andvg;.) Then for the single-particle problem we have six
Euler—Lagrange equations:

where () and n are functions of the spatial coordinatgs
=(r,0,¢) or (x,y,z). Many metrics of physical interest can
be put into this form, including the Schwarzschild metric.

The orbits of massive particles are obtained by requiring that d [ JL aL
they be geodesics: at ng :&_qi' (29
P) f ds=0. (21 and
_ i d|dL aL
If we insert the assumed form of the line elemdst we can il == 7 (30
express the geodesic condition in the form of Hamilton’s Ip; Pi
principle, Eq.(2), where the Lagrangian is wherei=1,2,3.
L(X,0g)=— mCZQ[l_UénZ/qu/Z_ (22) Let us consider thg-equation(29) first, and apply it to a

i i Cartesian coordinate; . If we operate on the Lagrangian of
(The factor of the rest masa has been included for dimen- Eq. (5) we find:

sional conveniencg.

The canonical momenta are dL
_ 2 202162112, K:pi’ (3Y)
pi=mOnT1l-vgn</ce] gi- (23 9
The Hamiltonian is iz _ p% 32
H=mQ[1—vZn%/c?] 2, (24) Mo _
or, if expressed in terms of the momenta, Thus, the Euler—Lagranggequation becomes
dp v
H=mc[ Q%+ p?/n?m?c?]Y2 (25) d_T = p&_x-p' (33)
I

If we square both sides of E@25) and substituteH =% w , )
_ ifi Let us now consider the equation,(30). Because the La-
andp=7#k, we obtai X .
grangian does not actually depend upon the generalized ve-
h2w?=m?c*Q?+ c?h?k?/n?. 28)  ocity p;,

By differentiating both sides of E¢26) with respect tk, we

obtain the dispersion relation ﬁzo_ (34)
vpug=C?/n?, (27) Ip;
Now,

wherev ,= w/k is the phase velocity andy=dw/dk is the
group velocity of the de Broglie waves. aL a(pvp)

Now we have all the necessary pieces in hand. Using Eq. a_p:Ugi_ api (35
(23), we may write Eq(22) in the form ! '
e Then, becausep/dp;=p;/p, Eq. (30) becomes
L=plvg— (28 vy P
nzvg gi= O,’—pi'f'al)p (36)

Then, with the use of Eq27), L may be put into the form
given by Eq.(6). In this example, we have begun with a : ; .
Lagrangian that is valid for relativistic speeds and arbitrarilyCal e_:qua}tlons Of. motion. _Equatlo(l33) corresponds 1o
strong gravitational fields. Thus, in spite of its simple form, Hamilton's dynamical equatiodp; /dt=—dH/Jx;, and Eq.
for the class of metrics under consideration, E).is an  (36) corresponds to Hamilton'’s kinematic equatiog
exact general-relativistic relation. Incidentally, E6) also  =dH/dp;. (This correspondence may be easily verified for
gives insight into why the geodesics of light rays are null: forthe particular example of Sec. Il A.

Equationg33) and(36) are equivalent to Hamilton’s canoni-
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Finally, it will be helpful to express the Lagrangian in an vp=c/n, (44)
alternative form. If we multiply Eq(36) by p; and sum over

i we obtain wheren(x) is the index of refraction, assumed to be inde-

pendent oft, so that, for a given frequency componeat,
pzi pi%:Zi - % Z piz. 37) remains constant along the ray. Becalspoints along the

ap; ray, we may write
But because> pf:pz, the right-side of Eq(37) is the La- k=kd—x (45)
grangian itself. Thus ds’
_ E v where dx is a directed element of the ray, ams is the
L=p i piﬁ_pi' (38) length of this element of distance taken along the ray. Thus
dx/dsis a unit vector tangent to the ray. Finally, we note that
k= wnl/c. (46)

V. GENERALIZATION TO OTHER WAVES ] )
If we substitute Eqs(44)—(46) into Eq. (43), and treatw as

Until now, we have been exclusively concerned with par-a constant along the ray, we find
ticle mechanics. In the application of our theorem, we have 4/ d
simultaneously pictured a classical particle and its underly- _( n_X
ing quantum-mechanical phase waves. But the expression of ds| ds

the actio_n as the ”“mb.er of phase waves t'h.at pass thrOl“'Q\r/hich is the standard equation for the shape of a ray in a
the moving particle as it moves from its initial to its final oqium of variable index of refraction.

position is broader than mechanics. It applies in the geo- In this example, in which does not depend upon the,

metrical optics limit to any linear wave system. That is, if it the wave group follows the rays, that is, travels in the direc-

is possible to follow the motion of the center of a wave,. ; .
group, then the equations of motion of the group center cafion of k. This may be seen from Eq40) by putting
dv,/dki=0. In the more general case in whioly depends

be deduced from a Lagrangian that takes the form of(f)q.

=Vn, (47)

This may be demonstrated very simply. upon thek; as well as the;, we may first solve Eq43) for
Consider a general wave disturbance. The Cartesian conf?€ shapes of the rays and then apply &) to determine
ponents of the group velocity are the path of the wave group.
Jw

vgi (39  VI. CONCLUDING REMARKS

ak;
Becausav=kv,,, we have For a wide range of situations, the classical action associ-
ated with a one-particle system is the number of phase waves

v, K; that pass through the particle as the particle moves from its

vgi=K =t op (40 initial to its final position. The applications discussed did not

! specifically address the question of whether this interpreta-

which has the form of Eq:36). If we multiply by k; and sum  tion continues to hold even in time-dependent potentials.

overi, we obtain But, in fact, it does. This we might surmise from Sec. Il C,
o in which we did not have to assume that the vector potential
> Kiv gi= k>, k; &_kp +v k. (41  Awas constant in time. As long as we are able to identify the
i i i

quantum-mechanical phase wave with the surface of constant
action in classical Hamilton—Jacobi theory, the phase speed
is rigorously equal tdd/p, whether or not the Hamiltonian
depends explicitly upon tim&and this is the key fact that
L=k-vyg—kuvy, (42) underlies the theorem. Moreover, the theorem holds also for

in complete conformity with Eq(5). In operating on this nonisotropic potentials. Section Il D provides a convincing

Lagrangian to obtain the equations of motion, one shoul&’r?c:.f' 'Tthere W‘.:'t ci[hosel ]E.O l\g’obrk witk]fa pt:;rticle i[n. a.gten.eral-
regardv , as a function of the;; andk; .8 Again, L itselfisa ~ [S/a:VIStc gravitational fieid by casting the metric into 1so-
tropic form. However, the validity of the theorem cannot

function of thex;, xj (=vg;), ki, andk;, although of course  gepend upon this convenience for the following reason.
the latter do not actually appear. _ Events are independent of conventions. Thus, if a certain
~We have deduced the form of the Lagrangian from thenumper of phase waves pass through the moving particle as
kinematic equation. It is, of course, necessary to show thahe particle moves from one space—time position to another,
the Lagrangian also leads to the correct dynamical equatiofhis number must be independent of whether or not we

Since, by analogy to E(38), kZk;dv,/dk; may be inter-
preted as the Lagrangian, we find

The g equation for the Lagrangian of E2) is choose to work in isotropic coordinatés.
dk The Lagrangians of Eq9¥8), (12), (16), and (22) little
T kVu,. (43)  resemble one another, yet they do all have something in com-

mon, the universal form of Eq5). The interpretation of the

A simple way to see that E@¢43) is the correct dynamical single-particle Lagrangian g¥v4—v,) can often be useful
equation is to examine the familiar special case of lightwhen one needs to write down, or check, a Lagrangian.
waves in the geometrical optics limit. We take the phaseéMoreover, it provides a ready way to visualize the action.
velocity to be an isotropic function of the coordinates alone Most readers have spent some time at the waterfront watch-
so that we may write ing boat wakes. The next time you get a chance to do this,
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count the crests of the phase waves as they pass through theé/esley, Reading, MA, 19802nd ed., p. 321. In contrast, a very clear and
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