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In a system consisting of a single particle in a potential, the classical action*L dt is the number of
phase waves that pass through the moving particle, as the particle moves from its initial to its final
position. Thus the Lagrangian can be cast into the formL5p(vg2vp), wherevg andvp are the
group and phase velocities andp is the momentum. ©2003 American Association of Physics Teachers.
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I. INTRODUCTION

Hamilton’s principal function~now often called the ac
tion!,

S5E
t1

t2
L~qi ,v i !dt, ~1!

plays an important role in both classical and quantum m
chanics. In classical mechanics, Hamilton’s principle,

dE
t1

t2
L dt50, ~2!

leads to the Euler–Lagrange equations of motion. In qu
tum mechanics,S frequently appears as a phase, for exam
in Wentzel–Kramers–Brillouin calculations and, more fu
damentally, in Feynman’s sum over histories. However, i
not so clear just whatS represents. For example, in a clas
cal mechanical system, why shouldS be the time integral of
the difference between the kinetic and potential energ
Moreover, the Lagrangians for different systems seem
have nothing in common with one another.

The meaning of the action can be made clearer if we c
nect the classical particle with its underlying de Brog
phase waves. In all that follows the reader will be asked
visualize the classical particle and its phase waves simu
neously. We shall see that, in a single-particle system,S has
a simple physical interpretation. Apart from a multiplicativ
constant,S is the number of phase waves that pass thro
the moving particle between timest1 and t2. Therefore, all
single-particle Lagrangians do share a common form.

In Sec. II, we shall see how this theorem can be prov
Section III will illustrate its utility in several applications. In
Sec. IV we shall see how to calculate the equations of mo
directly from a new form of the Lagrangian. Finally, in Se
V, we will see that this treatment can be extended to ot
kinds of waves.

II. AN ALTERNATIVE FORM FOR THE SINGLE-
PARTICLE ACTION

The LagrangianL(qi ,v i) is a function of the coordinate
qi and their velocitiesv i5dqi /dt. By a reversal of the usua
Legendre transformation,L may be calculated from the
HamiltonianH:

L5(
i

pivgi2H5p•vg2H, ~3!

where vg is the particle velocity and the indexi labels its
components.pi is the momentum conjugate toqi . Because
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the particle velocity is equal to the group velocity of the
Broglie waves, we may also regardvg as the group velocity:
the subscriptg will serve as a reminder. Now, for a particl
with a well-defined energy,

H5\v5pv/k5pvp , ~4!

where\5h/2p, h is Planck’s constant,v is the frequency,k
is the wave number, andvp is the phase velocity of the d
Broglie waves associated with the particle. Using this sub
tution for H, we obtain

L5p•vg2pvp . ~5!

If the momentum and particle velocity are parallel, Eq.~5!
simplifies to

L5p~vg2vp!. ~6!

Thus the action becomes

S5E
t1

t2
p~vg2vp!dt. ~7!

Now, (vg2vp)dt is the relative displacement of the partic
and its phase wave. Moreover,p5h/l, wherel is the par-
ticle’s de Broglie wavelength. So we see that the action
equal toh times the number of phase waves that pass thro
the particle, as the particle moves between the initial and
final position. The term ‘‘action’’ therefore seems rather a
the action expresses a sort of interaction between the par
and its phase wave.

Most treatments of the relation of the classical action
the quantum mechanical phase wave depend on the ra
daunting apparatus of the Hamilton–Jacobi equation,1 which
reflects the route followed historically by Schro¨dinger. Equa-
tion ~6! certainly does not replace these approaches, bu
does provide another perspective. The action of Eq.~1! is a
Lorentz invariant—a fact that usually is established by co
siderations from relativity. But the Lorentz invariance of th
action becomes obvious when we see that the action is m
up of countable entities or events. A certain number of ph
waves pass through the particle as the particle moves from
initial configuation to its final one. The number of the
events cannot depend upon the frame of reference of
observer. Finally, let us note that Eq.~5!, or Eq. ~6! if the
potential is isotropic, provides a universal form of the sing
particle Lagrangian.
457p/ © 2003 American Association of Physics Teachers
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III. EXAMPLES

A. Nonrelativistic particle in a scalar potential

As our first example, consider a nonrelativistic partic
with massm, momentump, and potential energyU(x) that
varies with positionx. The Lagrangian is

L5
p2

2m
2U5pS p

2m
2

U

p D . ~8!

The group velocity isvg5p/m, and the phase velocity is

vp5
v

k
5

H

p
5

p

2m
1

U

p
. ~9!

Thus the expression in parentheses in Eq.~8! is equal to
(vg2vp) and the Lagrangian assumes the form of Eq.~6!.2

B. Relativistic particle in a scalar potential

As a second example of the utility of Eq.~6! for the
single-particle Lagrangian, let us see how it can be use
deduce the form of the relativistic Lagrangian for a parti
in a scalar potential. In many textbooks, this Lagrangian
often just written down with the remark that it can be verifi
by showing that its Euler–Lagrange equations are the cor
equations of motion.3 We begin from the expressions for th
relativistic momentump and energyH:

p5mvgg, ~10!

H5mc2g1U, ~11!

whereg5(12vg
2/c2)21/2 andc is the vacuum speed of light

Then, becausevp5H/p, Eq. ~6! yields

L52mc2~12vg
2/c2!1/22U. ~12!

This derivation may be the simplest possible way to jus
the form of the relativistic Lagrangian.

C. Relativistic particle in an electromagnetic field

If the vector potentialA is introduced, the canonical mo
mentump need not be parallel to the group~and particle!
velocity vg . In this case we must use the Lagrangian in
form of Eq. ~5!. Nevertheless, the action*L dt continues to
be the number of phase waves that pass through the mo
particle.

To demonstrate this, we first recall that Eq.~5! gives the
correct Lagrangian. Let a particle of massm and chargee
move in an electromagnetic field characterized by the ve
potentialA and scalar potentialf. The canonical momentum
p and energyH are

p5mvgg1
e

c
A, ~13!

H5mc2g1ef. ~14!

If we substitute Eqs.~13! and ~14! into Eq. ~3!, we have

L5S mvgg1
e

c
AD •vg2~mc2g1ef! ~15!

52mc2A12vg
2/c22ef1

e

c
vg•A, ~16!
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the usual form of the Lagrangian for this system. There
nothing new here:H andL are related by the usual prescrip
tion.

To complete the demonstration, we must show that, e
if the momentum is not in the direction of the group veloci
the actionS still represents the number of phase waves t
pass through the particle as the particle moves betwee
initial and final positions. At the outset we recall that th
phase velocityvp is not a vector.4 However, for the purpose
of visualization,vp may be regarded as directed alongk, that
is, in the direction ofp. So the Lagrangian could also b
written as

L5p•~vg2vpk̂!, ~17!

wherek̂ is a unit vector in the direction ofk.
Let u denote the angle betweenp andvg . In Fig. 1, thex

axis represents the direction of the particle~and group! ve-
locity vg , while ab is the direction ofk or p.5 The wave
fronts of the phase waves are at right angles tok. Let phase
crest 0 pass through the particle at pointa at time 0. In the
short time intervalt, the phase crest advances a distancevpt
and occupies positionbd. Crest 0 now crosses thex axis
~that is, the particle trajectory! at pointd. Thus the node of
intersection between the particle trajectory and the ph
wave has moved a distancevNt. ~This is one reason whyvp
is not a vector: itsx ‘‘component’’ is longer than the vecto
itself.! From Fig. 1 we see that

vN5vp /cosu. ~18!

The distance between two successive crests of the p
wave, measured along the particle trajectory, isl/cosu.
Now, in time t the particle moves a distancevgt, advancing
from a to c. The number of phase crests that pass through
particle between time 0 and timet is therefore

cd

l/cosu
5

~vN2vg!t

l/cosu
5

~vp2vgcosu!t

l
~19a!

5
p

h
~vp2vgcosu!t5~pvp2p•vg!t/h. ~19b!

Apart from the factor ofh and the overall minus sign in
volved in the definition of the classical action, the right-ha

Fig. 1. Phase waves and group velocity in the presence of a vector pote
The directionab of the wave vector need not coincide with the directionac
of the particle velocity.
458James Evans
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side of Eq.~19b! is precisely the infinitesimal version of Eq
~1!. So, even with the vector potential included, the action
equal toh times the number of phase waves that pass thro
the particle.

D. Relativistic particle in a strong gravitational field

We have seen that for a particle moving at relativis
speeds in either a scalar or a vector potential, the class
single-particle action is rigorously given by the number
phase waves that pass through the moving particle. T
theorem continues to hold even in the curved space of g
eral relativity. As an example, consider a static, isotro
gravitational field represented by the metric

ds25V2~x!~c2dt22n2~x!udxu2!, ~20!

where V and n are functions of the spatial coordinatesx
5(r ,u,f) or (x,y,z). Many metrics of physical interest ca
be put into this form, including the Schwarzschild metr
The orbits of massive particles are obtained by requiring
they be geodesics:

dE ds50. ~21!

If we insert the assumed form of the line elementds, we can
express the geodesic condition in the form of Hamilto
principle, Eq.~2!, where the Lagrangian is

L~xi ,vgi!52mc2V@12vg
2n2/c2#1/2. ~22!

~The factor of the rest massm has been included for dimen
sional convenience.!

The canonical momenta are

pi5mVn2@12vg
2n2/c2#21/2vgi . ~23!

The Hamiltonian is

H5mc2V@12vg
2n2/c2#21/2, ~24!

or, if expressed in terms of the momenta,

H5mc2@V21p2/n2m2c2#1/2. ~25!

If we square both sides of Eq.~25! and substituteH5\v
andp5\k, we obtain6

\2v25m2c4V21c2\2k2/n2. ~26!

By differentiating both sides of Eq.~26! with respect tok, we
obtain the dispersion relation

vpvg5c2/n2, ~27!

wherevp5v/k is the phase velocity andvg5dv/dk is the
group velocity of the de Broglie waves.

Now we have all the necessary pieces in hand. Using
~23!, we may write Eq.~22! in the form

L5pFvg2
c2

n2vg
G . ~28!

Then, with the use of Eq.~27!, L may be put into the form
given by Eq.~6!. In this example, we have begun with
Lagrangian that is valid for relativistic speeds and arbitra
strong gravitational fields. Thus, in spite of its simple for
for the class of metrics under consideration, Eq.~6! is an
exact general-relativistic relation. Incidentally, Eq.~6! also
gives insight into why the geodesics of light rays are null:
459 Am. J. Phys., Vol. 71, No. 5, May 2003
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light in a gravitational field, the phase and group veloci
are equal, so the action vanishes.

IV. CLASSICAL EQUATIONS OF MOTION

It might be thought that having the Lagrangian in the fo
of Eq. ~5! or ~6! would be of little utility for calculating
equations of motion, because we would need to re-exp
the momentapi in terms of the coordinatesqi and velocities
vgi . However, this is not the case. For we can operate
rectly with the Lagrangian in this form if we regard thepi as
coordinates, along with theqi . The generalized velocities ar

then theṗi and thevgi ~where, of course,vgi5q̇i).
7 We shall

regard the phase velocityvp as a function of theqi andpi .
~But we could equally well considervp to be a function ofqi

and vgi .) Then for the single-particle problem we have s
Euler–Lagrange equations:

d

dt S ]L

]vgi
D5

]L

]qi
, ~29!

and

d

dt S ]L

] ṗi
D 5

]L

]pi
, ~30!

wherei 51,2,3.
Let us consider theq-equation~29! first, and apply it to a

Cartesian coordinate,xi . If we operate on the Lagrangian o
Eq. ~5! we find:

]L

]vgi
5pi , ~31!

]L

]xi
52p

]vp

]xi
. ~32!

Thus, the Euler–Lagrangeq equation becomes

dpi

dt
52p

]vp

]xi
. ~33!

Let us now consider thep equation,~30!. Because the La-
grangian does not actually depend upon the generalized
locity ṗi ,

]L

] ṗi

50. ~34!

Now,

]L

]pi
5vgi2

]~pvp!

]pi
. ~35!

Then, because]p/]pi5pi /p, Eq. ~30! becomes

vgi5p
]vp

]pi
1

pi

p
vp . ~36!

Equations~33! and~36! are equivalent to Hamilton’s canon
cal equations of motion. Equation~33! corresponds to
Hamilton’s dynamical equationdpi /dt52]H/]xi , and Eq.

~36! corresponds to Hamilton’s kinematic equationẋi

5]H/]pi . ~This correspondence may be easily verified
the particular example of Sec. III A.!
459James Evans
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Finally, it will be helpful to express the Lagrangian in a
alternative form. If we multiply Eq.~36! by pi and sum over
i, we obtain

p(
i

pi

]vp

]pi
5(

i
pivgi2

vp

p (
i

pi
2 . ~37!

But because(pi
25p2, the right-side of Eq.~37! is the La-

grangian itself. Thus

L5p(
i

pi

]vp

]pi
. ~38!

V. GENERALIZATION TO OTHER WAVES

Until now, we have been exclusively concerned with p
ticle mechanics. In the application of our theorem, we ha
simultaneously pictured a classical particle and its unde
ing quantum-mechanical phase waves. But the expressio
the action as the number of phase waves that pass thr
the moving particle as it moves from its initial to its fin
position is broader than mechanics. It applies in the g
metrical optics limit to any linear wave system. That is, if
is possible to follow the motion of the center of a wa
group, then the equations of motion of the group center
be deduced from a Lagrangian that takes the form of Eq.~5!.
This may be demonstrated very simply.

Consider a general wave disturbance. The Cartesian c
ponents of the group velocity are

vgi5
]v

]ki
. ~39!

Becausev5kvp , we have

vgi5k
]vp

]ki
1vp

ki

k
, ~40!

which has the form of Eq.~36!. If we multiply by ki and sum
over i, we obtain

(
i

kivgi5k(
i

ki

]vp

]ki
1vpk. ~41!

Since, by analogy to Eq.~38!, k(ki]vp /]ki may be inter-
preted as the Lagrangian, we find

L5k•vg2kvp , ~42!

in complete conformity with Eq.~5!. In operating on this
Lagrangian to obtain the equations of motion, one sho
regardvp as a function of thexi andki .8 Again, L itself is a

function of thexi , ẋi (5vgi), ki , andk̇i , although of course
the latter do not actually appear.

We have deduced the form of the Lagrangian from
kinematic equation. It is, of course, necessary to show
the Lagrangian also leads to the correct dynamical equa
The q equation for the Lagrangian of Eq.~42! is

dk

dt
52k“vp . ~43!

A simple way to see that Eq.~43! is the correct dynamica
equation is to examine the familiar special case of lig
waves in the geometrical optics limit. We take the pha
velocity to be an isotropic function of the coordinates alo
so that we may write
460 Am. J. Phys., Vol. 71, No. 5, May 2003
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vp5c/n, ~44!

wheren(x) is the index of refraction, assumed to be ind
pendent oft, so that, for a given frequency component,v
remains constant along the ray. Becausek points along the
ray, we may write

k5k
dx

ds
, ~45!

where dx is a directed element of the ray, andds is the
length of this element of distance taken along the ray. T
dx/ds is a unit vector tangent to the ray. Finally, we note th

k5vn/c. ~46!

If we substitute Eqs.~44!–~46! into Eq. ~43!, and treatv as
a constant along the ray, we find

d

dsS n
dx

dsD5“n, ~47!

which is the standard equation for the shape of a ray i
medium of variable index of refraction.

In this example, in whichn does not depend upon theki ,
the wave group follows the rays, that is, travels in the dir
tion of k. This may be seen from Eq.~40! by putting
]vp /]ki50. In the more general case in whichvp depends
upon theki as well as thexi , we may first solve Eq.~43! for
the shapes of the rays and then apply Eq.~40! to determine
the path of the wave group.

VI. CONCLUDING REMARKS

For a wide range of situations, the classical action ass
ated with a one-particle system is the number of phase wa
that pass through the particle as the particle moves from
initial to its final position. The applications discussed did n
specifically address the question of whether this interpre
tion continues to hold even in time-dependent potentia
But, in fact, it does. This we might surmise from Sec. III C
in which we did not have to assume that the vector poten
A was constant in time. As long as we are able to identify
quantum-mechanical phase wave with the surface of cons
action in classical Hamilton–Jacobi theory, the phase sp
is rigorously equal toH/p, whether or not the Hamiltonian
depends explicitly upon time,9 and this is the key fact tha
underlies the theorem. Moreover, the theorem holds also
nonisotropic potentials. Section III D provides a convinci
proof. There we chose to work with a particle in a gener
relativistic gravitational field by casting the metric into is
tropic form. However, the validity of the theorem cann
depend upon this convenience for the following reas
Events are independent of conventions. Thus, if a cer
number of phase waves pass through the moving particl
the particle moves from one space–time position to anot
this number must be independent of whether or not
choose to work in isotropic coordinates.10

The Lagrangians of Eqs.~8!, ~12!, ~16!, and ~22! little
resemble one another, yet they do all have something in c
mon, the universal form of Eq.~5!. The interpretation of the
single-particle Lagrangian asp(vg2vp) can often be usefu
when one needs to write down, or check, a Lagrangi
Moreover, it provides a ready way to visualize the actio
Most readers have spent some time at the waterfront wa
ing boat wakes. The next time you get a chance to do t
460James Evans



116–126.
2As with all treatments of phase waves for the nonrelativistic Lagrangian
this is somewhat fortuitous, because the true frequency of the de Brog
waves differs fromH/\ by the enormous contributionmc2/\ due to the
rest mass. However, when the rest mass energy is included, the resul
only an effective constant increment ofmc2 to the potential energyU, with
no consequences for the validity of the theorem.

3For example, Jerry B. Marion and Stephen T. Thornton,Classical Dynam-
ics of Particles and Systems~Harcourt Brace Jovanovich, San Diego,
1988!, 3rd ed., p. 539; Herbert Goldstein,Classical Mechanics~Addison–

SCIENCE AS A

Personally, I believe there is a better meta
tapestry. It is beautiful in the way the contrastin
coherent whole. It is panoramic in its scope, th
subatomic particles to the vast outer reaches
artifact, ingeniously and seamlessly woven t
without affecting the whole.

Owen Gingrich,Let There Be Light: Modern Cosmogony a
Scribner’s Sons, 1983!. Reprinted inThe World Treasury o
Company, Boston, MA, 1991!, p. 380.
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count the crests of the phase waves as they pass through the
wave group. The number that you get is the action.
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t is
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