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The classical Hall effect presents a surprisingly unusual and challenging problem in electrostatics,
with boundary conditions that are not of Dirichlet, Neumann, or of mixed Dirichlet and Neumann
type. These unusual boundary conditions create several difficulties not normally encountered in
standard problems, and ultimately lead to expansion of the electric potential in a nonorthogonal
basis set. We derive the boundary conditions for the potential in a rectangular geometry, construct
a solution for the potential, and discuss the relation between this problem and problems of the
standard mixed type. We also address a commonly encountered misconception about the current
distribution. © 1998 American Association of Physics Teachers.
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I. INTRODUCTION

The Hall effect was discovered over 100 years ago,
has since become a widely used experimental tool for stu
ing the transport properties of materials, as well as the b
for a large number of technological applications.1 One does
not need to know the full electrostatic solution to the H
problem in order to extract useful information, since volta
differences between suitable pairs of points in the curr
flow suffice to characterize the transport processes.2 The full
solution to the electrostatic problem is a surprisingly ch
lenging exercise, going beyond the techniques that are m
frequently used in potential theory problems.

A typical arrangement of a Hall effect experiment is illu
trated in Fig. 1. A thin, rectangular metal plate lies in t
x–y plane. The edge aty5H is maintained at electric po
tential V0 and the edge aty52H is maintained at2V0 .
Thus an electric current will flow in the2y direction. If an
externally produced uniform magnetic fieldB is imposed in
the2z direction, there will be a magnetic force on the mo
ing ~positive! charges, directed in the1x direction. This
gives rise to a charge separation that produces a pote
gradient in thex direction. The problem, then, is to find a
analytical expression for the electric potentialV(x,y) every-
where in the metal plate.

Although this problem is stated in simple terms, it tur
out to have several unusual features. First, it is not imme
ately clear what conditions must be imposed onV(x,y) at
the boundariesx50 andx5L. Second, once these bounda
conditions are derived, they result in a boundary-value pr
lem that is not of standard type. Usually we expect to
counter a Dirichlet problem~V specified everywhere on th
boundary!, a Neumann problem~normal derivative ofV
specified everywhere on the boundary!, or a ‘‘mixed’’ prob-
lem ~Dirichlet conditions on part of the boundary and Ne
mann on the remainder!.3 As we shall see, our simple prob
lem falls into none of these classes. Third, as a consequ
of these unusual boundary conditions we are forced to
pandV(x,y) in terms of nonorthogonal basis functions. Ne
ertheless, a series solution forV(x,y) can be obtained by
straightforward methods. This combination of unusual ma
ematical features and a simple physical situation will,
hope, make the problem of some interest to readers of
668 Am. J. Phys.66 ~8!, August 1998
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Journal. Finally, as we show in an Appendix, this proble
can also be solved by reducing it to an infinite number
problems of standard type.

II. BOUNDARY CONDITIONS AT x50 AND x5L

We would like to determine the electric potentialV(x,y)
everywhere in the conductor. In the steady state there is
volume charge density so“–E50 ~E is the electric field!.
As this is electrostatics,E52“V, so we need to solve
Laplace’s equation,

“

2V50, ~1!

subject to the appropriate boundary conditions. The up
and lower edges of the plate are maintained at constant
tential:

V~x,H !5V0 , ~2!

V~x,2H !52V0 . ~3!

The other physical constraint is that no charge enters
leaves the sample through the sides atx50 andx5L. We
must now express this condition on the electric current
terms of the electric potential to provide us with the boun
ary conditions for the left- and right-hand edges.

In the case of zero magnetic field, the current densitJ
and the electric fieldE are related by Ohm’s law~throughout
this analysis we assume linear materials!

E5rJ, ~4!

wherer is the resistivity of the material. Equation~4! repre-
sents a condition of balanced forces. The left side is
electrostatic force per unit charge and the right side is
negative of the drag force per unit charge. In the presenc
a magnetic field,B, the magnetic force per unit charge,v3B,
must be added to the left side of Eq.~4!. The current density
is related to the drift velocity,v, asJ5nqv, whereq is the
charge andn is the number density of the charge carrie
assumed to be constant. Thus the generalization of Eq.~4!,
valid with a magnetic field present, is

E1
1

nq
J3B5rJ. ~5!
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Let us consider the standard problem, in which the m
netic field is perpendicular to the plane of the conduct
sheet:B52B0ẑ. In general, within the sample,J may have
both x and y components. Evaluating the cross product
Eq. ~5! we obtain

Ex2rJx2
B0

nq
Jy50, ~6!

Ey2rJy1
B0

nq
Jx50. ~7!

Solving Eqs.~6! and ~7! for the components of the curren
density we have4

Jx5
~Ex2lEy!

r~11l2!
, ~8!

Jy5
~Ey1lEx!

r~11l2!
, ~9!

wherel5B0 /rnq.
The requirement that no current leave through the edge

x50 and x5L means thatJx(0,y)50 and Jx(L,y)50.
These conditions, along with Eq.~8!, result in

Ex~0,y!5lEy~0,y!, ~10!

Ex~L,y!5lEy~L,y!. ~11!

In terms of the electric potential we haveEx52]V/]x and
Ey52]V/]y, so at bothx50 andx5L we require

]V

]x
5l

]V

]y
. ~12!

This is the desired boundary condition onV(x,y) at the left
and right boundaries.Note that the slopes of all the equipo
tential curves are equal to2l at the places where they me
the left- and right-hand edges.

Fig. 1. Sample geometry showing the axes, top and bottom boundary
ditions, and the magnetic field into the page. The points labeledP andQ are
symmetry points.
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The parameterl is also related in a simple way to a pa
rameter called the Hall angle5 uH , defined as the angle be
tweenJ and E. From the vector triangle6 of Eq. ~5!, illus-
trated in Fig. 2, we see that the Hall angle is simply

uH5tan21~B0 /rnq!5tan21 l. ~13!

The magnitudes and directions ofJ andE may well be dif-
ferent at different places in the plate. Nevertheless, the a
uH betweenJ andE is everywhere the same.

The vector diagram provides a more physical way of u
derstanding the boundary conditions. Figure 2 illustrates
vector triangle at~a! an arbitrary position in the rectangle,~b!
a point on the right edge, and~c! a point on the top edge. On
either the left- or right-hand edgesJ must be parallel to the
edge, thusE makes an angleuH with respect to the boundar
@Fig. 2~b!#. This is precisely the condition expressed by E
~11!. The top edge is an equipotential, soE must be perpen-
dicular to the boundary@Fig. 2~c!#.

Note that a statement frequently encountered in textboo7

stands in need of a correction. It is often asserted that in
steady state the magnetic force on the charge carriers
balances the horizontal component of the electric fo
~which is due to the Hall potential! and that, consequently
the current flows parallel to they axis. This is so only at the
left and right edges~as in Fig. 2!. Elsewhere in the plate,J in
general has anx component and the magnetic force is n
entirely in thex direction. However, for the case of sma
magnetic field or long, thin samples, it is a reasonable
proximation. We shall investigate the current distribution
Sec. VI.

III. STATEMENT OF THE BOUNDARY-VALUE
PROBLEM

The mathematical problem is as follows: FindV(x,y) that
solves“2V50 in the region 0<x<L and2H<y<H sub-
ject to the boundary conditions:

V~x,H !5V0 , ~14!

n-

Fig. 2. Balance of forces corresponding to Eq.~5!: ~a! general situation,~b!
at the right edge,J is straight down sinceJx50, ~c! at the top edgeE is
straight down sincey5H is an equipotential.
669Moelteret al.
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V~x,2H !52V0 , ~15!

]V

]xU
x50

5l
]V

]yU
x50

, ~16!

]V

]xU
x5L

5l
]V

]yU
x5L

. ~17!

Note thatl depends onB0 so the ‘‘no magnetic field’’ case
corresponds tol50.

This is an unusual set of boundary conditions. Typica
either the potential~Dirichlet!, or the normal derivative of
the potential~Neumann!, is known on each boundary, or els
the problem is of the ‘‘mixed’’ type, with Dirichlet condi-
tions on part of the boundary and Neumann on the rem
der. In our case the boundary conditions for the left and ri
edges are given in terms of both partial derivatives of
unknown potential,V(x,y). Note that the problem reduces
the standard ‘‘mixed’’ type forl50. The general (lÞ0)
problem does not appear to be covered in the standard t
ments of potential theory.8

IV. SOLUTION

We seek solutions of Laplace’s equation that satisfy c
ditions ~16! and ~17!. Any linear combination of such solu
tions will still satisfy ~16! and ~17!. The appropriate linea
combination can then be built up to satisfy Eqs.~14! and
~15!. We will handle the two forms for solutions of Laplace
equation separately.

A. Linear solution

A linear function ofx or y will clearly be annihilated by
the Laplacian operator. The bilinear solutionV(x,y)5(a
1bx)(c1dy), with a,b,c,d constant, satisfies the differen
tial equation. However, it is easy to see that this form can
satisfy the boundary conditions Eqs.~16! and~17!. Similarly
V(x,y)5(a1bx) f (y) or (c1dy)g(x), where f and g are
arbitrary functions, cannot satisfy Eqs.~16! and~17!. We are
therefore left with the possibility of a linear function ofx
plus a linear function ofy. At the left or right edge, the slop
of the equipotential curve is2l. Thus the linear solution
must be of the form

V~x,y!5al~x1b!1ay1c,

wherea,b,c are constants. We know from elementary co
siderations that in the absence of a magnetic field the s
tion is V(x,y)5V0y/H. The case of ‘‘no magnetic field’’
corresponds tol50 so a5V0 /H and c50. The linear so-
lution is therefore of the form

V~x,y!5
V0

H
@l~x1b!1y#. ~18!

B. Harmonic-exponential solutions

For the nonlinear forms we assume separable solution
the form V(x,y)5X(x)Y(y). In the usual way, Laplace’s
equation then separates into two ordinary differential eq
tions:

d2X

dx2 52k2X, ~19!
670 Am. J. Phys., Vol. 66, No. 8, August 1998
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d2Y

dy2 5k2Y, ~20!

where the separation constant,k2, is yet to be determined
X(x) and Y(y) are, of course, real functions of their arg
ments.

We can easily show thatk must be real, and thereforeX is
a trigonometric function ofx andY is an exponential func-
tion of y. To see this putV5XY in Eq. ~16! to find

X08Y5lY8X0 , ~21!

where the prime denotes differentiation with respect to
argument (X85dX/dx,Y85dY/dy). The subscript 0 de-
notes evaluation atx50. Differentiating Eq.~21! with re-
spect toy we get

X08Y85lY9X0 . ~22!

Substituting Eq.~20! in Eq. ~22! we find

X08Y85lk2YX0 . ~23!

Then using Eq.~21! in Eq. ~23! to eliminateY8 we have

k25S X08

lX0
D 2

. ~24!

Consequently,k2 is real and non-negative. Therefore,k is
real and from the forms of Eqs.~19! and ~20! we see that
X(x) is trigonometric andY(y) is exponential.

For a given value ofk, the harmonic-exponential solutio
is then of the form

Vk~x,y!5~Ak coskx1Bk sin kx!~Cke
ky1Dke

2ky!. ~25!

C. Applying the boundary conditions at x50, L

We now apply conditions~16! and ~17! to determine the
separation constantk and to restrict the range of possibilitie
for the constants of integrationA,B,C,D. First, applying Eq.
~16! to Eq. ~25!, we find

Bk

Ak
5l

Cke
ky2Dke

2ky

Cke
ky1Dke

2ky . ~26!

Thus the right side of Eq.~26! cannot be a function ofy.
Hence, either

Ck50, Bk52lAk , ~27!

or

Dk50, Bk5lAk . ~28!

For a specific value ofk, the most general solution is a linea
combination of both possibilities. Thus we have

Vk~x,y!5Rk~coskx1l sin kx!eky

1Sk~coskx2l sin kx!e2ky, ~29!

whereRk[AkCk ~for the caseDk50! andSk[AkDk ~for the
caseCk50!.

If we impose condition~17! on Eq.~29! and note that the
terms ineky ande2ky must satisfy this condition separatel
we find

~11l2!sin kL50. ~30!

Hence sinkL50 andk is restricted to valueskn given by
670Moelteret al.
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kn5np/L, ~31!

wheren51,2,3,... .
The most general solution satisfying the boundary con

tions at the left and right edges is therefore Eq.~18! plus
expressions of the form of Eq.~29!, with kn restricted by Eq.
~31!:

V~x,y!5
V0

H
@l~x1b!1y#

1 (
n51,2,3,...

@Rn~cosknx1l sin knx!ekny

1Sn~cosknx2l sin knx!e2kny# ~32!

or, recombining terms,

V~x,y!5
V0

H
@l~x1b!1y#1 (

n51,2,3,...
@cosknx~Rnekny

1Sne2kny!1l sin knx~Rnekny2Sne2kny!#. ~33!

D. Exploiting a symmetry

To proceed further, let us note a symmetry of the syst
of Eqs.~1!, ~14!, ~15!, ~16!, and~17!. These have the prop
erty thatV→2V whenx→L2x and y→2y. This means,
for example, that pointsP and Q in Fig. 1 have potentials
t
n

671 Am. J. Phys., Vol. 66, No. 8, August 1998
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with the same magnitude but opposite sign. Imposing t
symmetry on Eq.~33! requires thatb52L/2. Furthermore,
both the cosine and sine terms in the sum of Eq.~33! must
satisfy the symmetry separately.~Remember thatl is a free
parameter.! Now, sincekn5np/L,

coskn~L2x!5~21!n cosknx,

sin kn~L2x!5~21!n11 sin knx.

Requiring that each term in Eq.~33! satisfy the symmetry
V→2V whenx→L2x andy→2y then leads to~from the
cosine terms!

~21!n~Rne2kny1Snekny!52Rnekny2Sne2kny,

and to~from the sine terms!

~21!n11~Rne2kny2Snekny!52Rnekny1Sne2kny.

Adding these two equations, we find

Sn5~21!n11Rn . ~34!

Two cases arise:

for odd n, Sn5Rn ,
~35!

for even n, Sn52Rn .

Using Eq.~35! in Eq. ~33! we arrive at our final form of the
solution:
V~x,y!5
V0

H FlS x2
L

2D1yG1 (
m51,3,...

TmFcosS mp

L
xD coshS mp

L
yD1l sinS mp

L
xD sinhS mp

L
yD G

1 (
n52,4,...

UnFcosS np

L
xD sinhS np

L
yD1l sinS np

L
xD coshS np

L
yD G , ~36!
c-
of

nal
where Tm52Rm ~for m odd! and Un52Rn ~for n even!.
From here on we shall use the subscriptm to label the odd
coefficientsT1 ,T3 ,... and thesubscriptn to label the even
coefficientsU2 ,U4 ,... .

E. Applying the boundary conditions at y56H

We now require that theTm and Un be chosen so tha
V(x,y) satisfies the top and bottom boundary conditio
V(x,6H)56V0 . Thus we require

6V05
V0

H FlS x2
L

2D6HG
1 (

m51,3,...
TmFcosS mp

L
xD coshS mp

L
H D

6l sinS mp

L
xD sinhS mp

L
H D G

1 (
n52,4,...

UnF6cosS np

L
xD sinhS np

L
H D

1l sinS np

L
xD coshS np

L
H D G . ~37!
s

Adding and subtracting the two versions of Eq.~37! gives

2
V0

H FlS x2
L

2D G
5 (

m51,3,...
Tm cosS mp

L
xD coshS mp

L
H D

1l (
n52,4,...

Un sinS np

L
xD coshS np

L
H D ~38!

and

05l (
m51,3,...

Tm sinS mp

L
xD sinhS mp

L
H D

1 (
n52,4,...

Un cosS np

L
xD sinhS np

L
H D . ~39!

In Eqs.~38! and ~39! we have on the left-hand side a fun
tion of x and on the right side its expansion in a series
sines and cosines of multiples ofpx/L. It is important to
note that these functions of x do not form an orthogo
basis on the interval0<x<L. The functions cos(mpx/L)
and cos(m8px/L) are orthogonal~for mÞm8! on the interval
0<x<L. Similarly, sin(npx/L) and sin(n8px/L) are orthogo-
671Moelteret al.
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nal. But sin(npx/L) and cos(mpx/L) ~with n even andm odd!
are not. These functions are orthogonal on the inter
0<x<2L, but are not orthogonal on the interval 0<x<L.
This is another unusual feature of this simple Hall effe
problem. The nonorthogonality of the basis functions res
from the boundary conditions Eqs.~16! and ~17!. We must
be careful in evaluating the expansion coefficients.

~To understand the nonorthogonality an analogy might
helpful. Consider writing a vector in terms of a particular s
of nonorthogonal basis vectors and then determining
components. Let a vector in the plane,A, be written in terms
of a pair of unit vectorsû andv̂ which are at an anglea. We
can writeA5Auû1Avv̂. To find the coefficient we take th
dot product ofA with the appropriate basis vector. For e
ample to find Au we have û•A5Auû•û1Avû• v̂5Au

1Av cosa. We do not get just the coefficientAu ;Av is now
mixed in as well. The presence of the other coefficient is d
to the lack of orthogonality. For the usual case with orthog
nal basis vectorsa5p/2 and the second term vanishes.!

Multiply Eq. ~38! by cos(m8px/L) and integrate fromx
50 to x5L, with the result

Tm5
4V0Ll

p2Hm2 cosh~mpH/L !

2
4l

p cosh~mpH/L ! (
n52,4,...

Un coshS npH

L D n

n22m2 .

~40!

Multiply Eq. ~39! by cos(n8px/L) and integrate fromx50 to
x5L to obtain

Un5
24l

p sinh~npH/L ! (
m51,3,...

Tm sinhS mpH

L D m

m22n2 .

~41!

These are our conditions on the coefficients,Tm andUn .
Note that they involve coupled infinite sums. The odd co
ficients, Tm , are expressed in terms of the even ones,Un ,
and vice versa. This results from the failure of our ba
functions to be orthogonal.

The solution for the potentialV(x,y) is therefore given by
Eq. ~36! with Tm andUn determined by Eqs.~40! and ~41!.

F. Solution to order l2

For typical metals in experimental situations9 l
'0.005– 0.1. This suggests that Eqs.~40! and ~41! can be
solved iteratively. Looking at Eq.~40! we see that to first
order inl we need only the first term. The second term h
an explicitl and depends on theUn , all of which involvel.
Therefore, to first order inl the Tm are

Tm.
4V0Ll

p2Hm2 cosh~mpH/L !
. ~42!

Substituting Eq.~42! into Eq. ~41!, we find

Un.
216V0Ll2

p3H sinh~npH/L ! (
m51,3,...

tanh~mpH/L !

m~m22n2!
. ~43!

The potentialV(x,y) is therefore given by Eq.~36! with Tm

andUn given by Eqs.~42! and ~43!. This solution, with the
coefficients cut off as in Eqs.~42! and ~43!, is correct
672 Am. J. Phys., Vol. 66, No. 8, August 1998
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through orderl2, which is certainly adequate for compariso
with most experimental results.

G. Solution to any order in l

The solution to any order inl may be obtained by itera
tion with Eqs.~40! and~41!. A more systematic approach i
as follows. LetT denote a vector formed from theTm , andU
a vector formed from theUn :

T[S T1

0
T3

0
T5

A

D , U[S 0
U2

0
U4

0
A

D . ~44!

Then Eqs.~40! and ~41! may be written

T5T01QU, ~45!

U5VT, ~46!

where the components ofT0 are

Tm
0 5H 4V0Ll

p2Hm2 cosh~mpH/L !
for m odd

0 otherwise.

~47!

The matrix elements ofQ are

Qmn

5H 4l cosh~npH/L !

p cosh~mpH/L !

n

n22m2 for m odd andn even

0 otherwise,

~48!

and the matrix elements ofV are

Vnm

5H 24l sinh~mpH/L !

p sinh~npH/L !

m

m22n2 for m odd andn even

0 otherwise.
~49!

Substituting Eq.~46! into Eq. ~45!, we have

T5T01QVT ~50!

or

~ I 2QV!T5T0, ~51!

whereI is the identity matrix. Thus the solution forT is

T5~ I 2QV!21T0, ~52!

T5~ I 1QV1~QV!21~QV!31¯ !T0. ~53!

Now, as Eqs.~48! and~49! show, bothQ andV are propor-
tional to l. Equation~47! shows thatT0 is also proportional
to l. HenceT only contains elements with odd powers ofl.
And thus, by Eq.~46!, U contains only even powers ofl.
The truncated solution~to orderl2! given above, with the
Tm andUn given by Eqs.~42! and ~43! is equivalent to

T.T0, ~54!
672Moelteret al.
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U.VT0. ~55!

Although for real experimental situationsl is a small param-
eter, in principle one may solve the problem by matrix
version, using Eq.~52!, even for largel. In this case, one
must truncate the matrices to a finite number of element
advance.

V. NUMERICAL RESULTS

To get a physical sense for our solution we evaluate
potential and the current density numerically. The solution
given by Eq.~36! and the expressions for the coefficients,Tn

and Um , are given by Eqs.~52! and ~46!, respectively. As
the coefficients are infinite in number we truncated the v
tors by taking 20 elements in bothT and U and the corre-
spondingQ and V were 20320 matrices. The sums in Eq
~36! went tom519 andn520, respectively. Reasonable va
ues of the parameters were chosen to show represent
behavior. In what follows we letl50.2, V051, H51, and
L51. These last three parameters just set the scale and a
arbitrary units.

Equipotential curves,V5const, for the conductor ar
shown in Fig. 3 forV51,0.95,...,20.95,21. For the case of

Fig. 3. Equipotential curves over the whole conductor. From top to bot
the contours shown correspond toV51.0,0.95,...,20.95,21.0. The potential
was determined as discussed in the text withl50.2, V051, H51, L51.
673 Am. J. Phys., Vol. 66, No. 8, August 1998
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no magnetic field the equipotentials are horizontal lin
With a magnetic field the equipotentials are clearly curv
The equipotentials get closer together as one approache
upper left and lower right corners. This corresponds to
stronger electric field in these regions. However, as expe
from the boundary conditions, the equipotentials intersect
left and right edges at a constant angle, independent oy.
This can be seen in the close-up of a portion of the cond
tor, corresponding to the upper part, 0.8<y<1, as shown in
Fig. 4. From top to bottom the contours correspond toV
50.99, 0.98, 0.97,... .

VI. THE CURRENT DISTRIBUTION

With Eq. ~36! in hand for the potential, it is straightfor
ward to investigate the current distribution. Using Eqs.~8!
and~9! and taking appropriate partial derivatives ofV to get
the components ofE we find

Jx5
1

r (
m51,3,...

Tm

mp

L
sin~mpx/L !cosh~mpy/L !

1
1

r (
n52,4,...

Un

np

L
sin~npx/L !sinh~npy/L !, ~56!

Jy52
V0

Hr

2
1

r (
m51,3,...

Tm

mp

L
cos~mpx/L !sinh~mpy/L !

2
1

r (
n52,4,...

Un

np

L
cos~npx/L !cosh~npy/L !.

~57!

It is possible to perform two easy tests to verify thatJ as
calculated is consistent with the original boundary con
tions.

Fig. 4. Equipotential curves for the upper portion of the sample; this is
enlargement of Fig. 3 with the same parameters. Top to bottom the con
shown correspond toV50.99,0.98,0.97,... .
673Moelteret al.
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First, and most obviously,Jx vanishes atx50 andx5L.
This is consistent with the boundary condition illustrated
Fig. 2~b!.

Second, we shall show that aty56H, Jx52lJy . This
means that at the top or bottom edge, the current make
angle uH5tan21 l with the normal to the boundary, a
shown in Fig. 2~c!. That this condition is met by Eqs.~56!
and~57! is not immediately obvious. Therefore, differentia
Eq. ~37! with respect tox and divide byr to obtain

05
V0l

rH
1 (

m51,3,...

1

r
Tm

mp

L F2sinS mp

L
xD coshS mp

L
H D

6l cosS mp

L
xD sinhS mp

L
H D G

1 (
n52,4,...

1

r
Un

np

L F7sinS np

L
xD sinhS np

L
H D

1l cosS np

L
xD coshS np

L
H D G . ~58!

Evaluate Eq.~56! at y56H, and to the resulting equatio
add Eq.~58! to obtain

Jx~x,6H !5
V0l

rH
6

l

r (
m51,3,...

Tm

mp

L
cos~mpx/L !

3sinh~mpH/L !1
l

r (
n52,4,...

Un

np

L

3cos~npx/L !cosh~npH/L !. ~59!

Comparing Eq.~59! with Eq. ~57! evaluated aty56H, we
see indeed that

Jx~x,6H !52lJy~x,6H ! ~60!

for all x. Thus all across the top boundary, the current en
at an angleuH from the normal.

It is worthwhile to note one final point about they com-
ponent of the current. Integrating Eq.~57! across a horizonta
section gives the net current in they direction:

I y5tE
0

L

Jydx5
2V0Lt

rH
, ~61!

wheret is the thickness of the conducting plate. This is ju
the current we would expect in the absence of a magn
field. This is why the standard elementary treatments, wh
ignore the existence of a transverse current, nevertheles
tain reasonable behavior. Although the current is not eve
where in they direction, the nety current does not depen
on the magnetic field.

To obtain numerical results for the current density we u
the same procedure for determining the coefficientsTm and
Un as described above for the potential calculation. T
same parameters were also used,l50.2, V051, H51, and
L51. In addition we have letr51. ~This just sets the overal
scale and we are interested in relative behavior.! We evaluate
Eqs.~56! and~57! with the coefficientsTm andUn given by
Eqs.~52! and~46!. In Fig. 5 we show the vector field for th
current density on a uniform grid of points. The direction
the current density,J, at a point is determined by thex andy
components. The relative magnitude of the current densit
674 Am. J. Phys., Vol. 66, No. 8, August 1998
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indicated by the length. Along the top edge the magnitude
the current varies with positionx; however, the current en
ters the sample with the same angle everywhere along
top and leaves with the same angle everywhere along
bottom. Notice that this implies that more charge enters
upper left than the upper right. Correspondingly, mo
charge leaves the lower right than the lower left. Note t
there is an overall flow of charge from left to right. Als
shown are three ‘‘streamlines.’’ These flow lines are eve
where tangent to the localJ and correspond to paths of in
dividual charges. Charge entering along the left edge con
ues straight down to the bottom. Charge entering in
central portion of the top edge follows a curved path with
net transport in thex direction. The amount of net left to
right deflection is the greatest for charges entering at
center of the top edge.

VII. CONCLUSION

Most textbooks of electromagnetic theory warn the rea
that if one abandons the standard classes of boundary co
tions ~Dirichlet, Neumann, or ‘‘mixed’’!, the solubility of
Laplace’s equation is no longer a foregone conclusion. Ho

Fig. 5. Vector field of the current density on a uniform grid. The arro
indicate relative magnitude and direction. The three solid lines indicate fl
lines and correspond to the mean path of a charge.~The flow line is every-
where tangent to the localJ.! Calculated as described in the text withl
50.2, V051, H51, L51.
674Moelteret al.
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ever, physically plausible examples of nonstandard proble
appear to be rather few in number. In this paper we h
presented a solution to a nonstandard boundary value p
lem that arises naturally in the context of a surprising
simple Hall effect situation.
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APPENDIX I: REDUCTION OF THE PROBLEM TO
AN INFINITE NUMBER OF PROBLEMS OF
STANDARD TYPE

Because our boundary-value problem is not of stand
type, it is not immediately obvious from a mathematic
point of view why it should be soluble. It is therefore wor
investigating the relation between our problem and proble
of the standard type. To do so, we shall expand the pote
in powers of the parameterl and then successively solve
to each order. Our problem then reduces to an infinite se
‘‘standard’’ problems where the potential or its normal d
rivative is known on the boundaries. Essentially one sol
the problem to some order inl and uses that solution a
input for the next higher order.

Consider Laplace’s equation“2V50 with the solution
written

V~x,y!5V~0!~x,y!1lV~1!~x,y!1l2V~2!~x,y!1¯ ,
~62!

where superscripts indicate the corresponding order ofl for
each term. Now the boundary conditions areV(x,6H)5
6V0 and]V/]x5l]V/]y at x50, x5L. It is instructive to
see how this works for the first few terms,

6V05V~0!~x,6H !1lV~1!~x,6H !

1l2V~2!~x,6H !1¯ ~63!

and

F]V~0!

]x
1l

]V~1!

]x
1l2

]V~2!

]x
1¯G

x50,L

5lF]V~0!

]y
1l

]V~1!

]y
1l2

]V~2!

]y
1¯G

x50,L

. ~64!

From Eq. ~63! we equate the coefficients of success
powers ofl on each side to obtain

V~0!~x,6H !56V0 ,

V~1!~x,6H !50, ~65!

V~2!~x,6H !50,... .

Matching powers ofl in Eq. ~64! we see
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]V~0!

]x U
x50,L

50,

]V~1!

]x U
x50,L

5
]V~0!

]y U
x50,L

, ~66!

]V~2!

]x U
x50,L

5
]V~1!

]y U
x50,L

,... .

Notice that, for each order inl, the derivative at the left and
right boundaries,]V/]x, is now a known function ofy,
given in terms of the derivative of the solution at the pre
ous order.

V(0)(x,y) solves Laplace’s equation subject to the boun
ary conditions

V~0!~x,6H !56V0 ~Dirichlet on top and bottom!,
~67!

]V~0!

]x U
x50,L

50 ~Neumann on left and right sides!.

This can be done by inspection and yieldsV(0)(x,y)
5V0y/H. Note this is just thel50 part of our solution, Eq.
~36!.

V(1)(x,y) solves Laplace’s equation subject to the boun
ary conditions

V~1!~x,6H !50 ~Dirichlet on top and bottom!

]V~1!

]x U
x50,L

5
]V~0!

]y U
x50,L

~Neumann on left and right sides!

5known function of y

5V0 /H. ~68!

Solving this problem by standard methods yields

V~1!~x,y!5 (
m851,3,...

Am8
~1! sinhFm8p

2H S x2
L

2D G
3cosS m8p

2H
yD , ~69!

where

Am8
~1!

5
28V0

m82p2

~21!~m811!/2

cosh~m8pL/4H !
. ~70!

This may be compared with the order-l terms of the solution
given above, in Eqs.~36! and ~42!. Denote the order-l part
of this solutionlV1(x,y). Then from Eq.~36! we have

V1~x,y!5
V0

H S x2
L

2D
1 (

m51,3,...
Tm

~1! cosS mp

L
xD coshS mp

L
yD ,

~71!

where theTm
(1) are as given by Eq.~42!:

Tm
~1!5

4V0L

p2Hm2 cosh~mpH/L !
.

As Eqs.~69! and ~71! do not look much alike, it is worth-
while to show that they are exactly equivalent.
675Moelteret al.
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To see this, let us perform the following expansions. E
pand sinh@m8p(x2L/2)/2H# from Eq. ~69! in terms of the
functions cos(mpx/L), on the interval 0<x<L, where m
51,3,5,... :

sinhFm8p

2H S x2
L

2D G
52

8m8LH

p (
m51,3,...

cosh~m8pL/4H !

m82L214m2H2 cosS mp

L
xD .

~72!

Similarly, expandingx2L/2 from Eq. ~71! on the interval
0<x<L in terms of the same cos(mpx/L) yields

x2
L

2
52

4L

p2 (
m51,3,...

1

m2 cosS mp

L
xD . ~73!

Finally, expand cosh(mpy/L) from Eq. ~71! on the interval
2H<y<H in terms of the cos(m8py/2H), where m8
51,3,5,... :

coshS mp

L
yD5coshS mpH

L D F11
16m2H2

p

3 (
m851,3,...

~21!~m811!/2

m8~m82L214m2H2!

3cosS m8p

2H
yD G . ~74!

If we substitute Eqs.~73! and~74! into Eq.~71! we obtain

V1~x,y!5
64V0LH

p3 (
m51,3,...

(
m851,3,...

~21!~m811!/2

m8~m82L214m2H2!

3cosS mp

L
xD cosS m8p

2H
yD . ~75!

And if we substitute Eq.~72! into Eq. ~69!, we obtain an
expression forV(1)(x,y) which is identical to the right side
of Eq. ~75!. Thus Eq.~69! is indeed equivalent to the first
order part of Eq.~36!.

The sequence of problems beginning with Eqs.~67! and
~68! may be continued to whatever order is necessary. T
reduces our original problem~posed in Sec. III! to an infinite
set of standard problems with ‘‘mixed’’ boundar
conditions.10 From a mathematical point of view, this ex
plains why our nonstandard problem should indeed hav
stable, unique solution. From a practical point of view, ho
ever, the solution of this problem by reduction to a seque
of standard problems is infinitely more tedious!

APPENDIX II: ACHIEVING A UNIFORM CURRENT
DENSITY

The complexity of the potential problem is drastically r
duced if we adopt a different geometry. Let the conduct
plate be a parallelogram, as in Fig. 6. Two edges~1 and 2!
are parallel to thex axis. The other two edges~3 and 4! make
an angle with they axis that is equal to the Hall angleuH

5tan21 l5tan21(B0/rnq). Thus the geometry of the samp
must be preselected to match the material properties~r and
n) and the externally imposed magnetic field (B0).
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Note that now the triangle of forces takes the same ori
tation on all four boundaries. This means that the bound
condition for edges 3 and 4 is nowEx50. We must solve
Laplace’s equation subject to the boundary conditions

V~x,H !5V0 ~edge 1! ~76!

V~x,2H !52V0 ~edge 2! ~77!

]V

]x
50 ~edges 3 and 4!. ~78!

This is not a problem of the standard type, but in this ca
the solution is trivial:

V~x,y!5
V0

H
y ~79!

everywhere inside the parallelogram. The equipotentials
horizontal lines.

From Eqs.~8! and ~9!,

Jx5
lV0

Hr~11l2!
~80!

Jy5
2V0

Hr~11l2!
. ~81!

Thus J is everywhere constant and parallel to edge 3. T
magnitude ofJ is

J5
V0

HrA11l2
. ~82!

The combination 2HA11l2 is, of course, just the slan
height of the parallelogram, i.e., the length of edge 3, wh

Fig. 6. Specially chosen parallelogram geometry for the Hall effect as
scribed in Appendix II. The force triangle corresponding to Eq.~5! is shown
on all four boundaries.
676Moelteret al.
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is the actual distance that a charge must travel through
material.

The total currentI is obtained by multiplyingJ by the
cross-sectional area of the sample~taken perpendicular toJ!,
tL cosuH5tL/A11l2. Thus

I 5
tLV0

Hr~11l2!
, ~83!

which may be compared to Eq.~61!. Although the surface
areas of the plates shown in Figs. 1 and 6 are the s
(2HL), the direction of current flow in Fig. 6 produces a
effective increase in length, and a decrease in width, of
conductor.

So, another way to express the limitations of the tra
tional elementary treatment is to say that it blurs the disti
tion between the geometries of Figs. 1 and 6. In the limit
long, thin samples and low magnetic fields the two are
proximately the same. It is possible that the geometry of F
6 may have some utility in experimental applications.

1The Hall Effect and Its Applications, edited by C. L. Chien and C. R
Westgate~Plenum, New York, 1976!.

2E. H. Putley,The Hall Effect and Semiconductor Physics~Dover, New
York, 1968!.

3See J. D. Jackson,Classical Electrodynamics~Wiley, New York, 1975!,
2nd ed., pp. 42, 121. ‘‘Mixed’’ can also refer to the case when a lin
combination of the potential and its normal derivative is specified alo
677 Am. J. Phys., Vol. 66, No. 8, August 1998
he

e

e

i-
-
f
-
.

r
g

the boundary, see Daniel Zwillinger,Handbook of Differential Equations
~Academic, San Diego, 1989!, p. 2.

4This derivation can be found in Paul Lorrain, Dale R. Corson, and Fr
çois Lorrain,Electromagnetic Fields and Waves~Freeman, San Francisco
1988!, 3rd ed., p. 408, and Niel W. Ashcroft and N. David Mermin,Solid
State Physics~Saunders College Press, Philadelphia, 1976!, pp. 11–14.

5See Ref. 2, p. 24, and Gregory H. Wannier,Elements of Solid State Theor
~Cambridge U.P., New York, 1959!, p. 195.

6The force triangle is discussed by A. B. Pippard,Magnetoresistance in
Metals ~Cambridge U.P., New York, 1989!, p. 4.

7The following treatments, which are typical, explicitly assume that
current flow is one dimensional.~This is a reasonable assumption for sma
magnetic fields and long thin samples.! P. M. Fishbane, S. Gasiorowicz
and S. T. Thornton,Physics for Scientists and Engineers~Prentice Hall,
Englewood Cliffs, NJ, 1996!, 2nd ed., pp. 795–796; Charles Kittel,Intro-
duction to Solid State Physics~Wiley, New York, 1996!, 7th ed., pp.
164–166; Richard H. Bube,Electrons in Solids~Academic, New York,
1992!, 3rd ed., pp. 196–199.

8See, for example, Philip M. Morse and Herman Feshbach,Methods of
Theoretical Physics~McGraw–Hill, New York, 1953!; Ian N. Sneddon,
Mixed Boundary Value Problems in Potential Theory~Wiley, New York,
1966!; George Arfken,Mathematical Methods for Physicists~Academic,
San Diego, 1985!, 3rd ed.

9See Charles Kittel, in Ref. 7. For copper~pp. 24 and 160!: q51.60
310219 C, n58.4531028 m23, r51.7031028 V m, so l54.35
31023B0 with B0 in tesla. So for a typical field of roughly 1–20 T we ge
l'531023– 1021.

10A technical issue remains in the question of convergence for the serie
the right-hand side of Eq.~62!.
677Moelteret al.


