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The classical Hall effect presents a surprisingly unusual and challenging problem in electrostatics,
with boundary conditions that are not of Dirichlet, Neumann, or of mixed Dirichlet and Neumann
type. These unusual boundary conditions create several difficulties not normally encountered in
standard problems, and ultimately lead to expansion of the electric potential in a nonorthogonal
basis set. We derive the boundary conditions for the potential in a rectangular geometry, construct
a solution for the potential, and discuss the relation between this problem and problems of the
standard mixed type. We also address a commonly encountered misconception about the current
distribution. © 1998 American Association of Physics Teachers.

[. INTRODUCTION Journal. Finally, as we show in an Appendix, this problem
can also be solved by reducing it to an infinite number of
The Hall effect was discovered over 100 years ago, angroblems of standard type.
has since become a widely used experimental tool for study-
ing the transport properties of materials, as well as the basis
for a large number of technological applicatidn®ne does || BOUNDARY CONDITIONS AT x=0 AND x=L
not need to know the full electrostatic solution to the Hall
problem in order to extract useful information, since voltage We would like to determine the electric potentiax,y)
differences between suitable pairs of points in the currengverywhere in the conductor. In the steady state there is no
flow suffice to characterize the transport processBse full  yolume charge density s§-E=0 (E is the electric fielgl
solution to the electrostatic problem is a surprisingly chal-pg this is electrostaticsE= — VV, so we need to solve
lenging exercise, going beyond the techniques that are moﬁ%\place’s equation ’
frequently used in potential theory problems. '
A typical arrangement of a Hall effect experiment is illus- Vav=0, 1)

trated in Fig. 1. A thin, rectangular metal plate lies in thesubject to the appropriate boundary conditions. The upper

x—y plane. The edge at=H is maintained at electric po- anq Jower edges of the plate are maintained at constant po-
tential V, and the edge agy=—H is maintained at-Vj. tential:

Thus an electric current will flow in the-y direction. If an _
externally produced uniform magnetic fieRlis imposed in V(x,H)=Vo, 2
the —z direction, there will be a magnetic force on the mov- V(x,—H)=—Vp. (3)

ing (positive charges, directed in the-x direction. This

gives rise to a charge separation that produces a potenti%ﬁe Otrt'ﬁr physuI:aIthconstrr]amt IS dthat tT)O CzargeL e\r;\t/ers or
gradient in thex direction. The problem, then, is to find an eaves the sampie throug € sidexalt andx=L. e

analytical expression for the electric potent,y) every- must now express this cor_1d|t|0n on_the elec_trlc current in
where in the metal plate ' terms of yhe electric potential to provide us with the bound-
. plate.. L . ary conditions for the left- and right-hand edges.

Although this problem is stated in simple terms, it turns In the case of zero magnetic field, the current dendity
out to have several unusual features. First, it is not immediémd the electric fiel& are related by O,hm’s lathroughout
ately clear what conditions must be imposed \¥fx,y) at this analysis we assume linear matefials
the boundariex=0 andx=L. Second, once these boundary
conditions are derived, they result in a boundary-value prob- E=pJ, 4
lem that is not of standard type. Usually we expect to enyhere is the resistivity of the material. Equatid#) repre-
counter a Dirichlet problenfV specified everywhere on the sents a condition of balanced forces. The left side is the
boundary, a Neumann problenfnormal derivative ofV  electrostatic force per unit charge and the right side is the
specified everywhere on the boundaryr a “mixed” prob-  negative of the drag force per unit charge. In the presence of
lem (Dirichlet conditions on part of the boundary and Neu- a magnetic fieldB, the magnetic force per unit chargexB,
mann on the remaindef As we shall see, our simple prob- must be added to the left side of H). The current density
lem falls into none of these classes. Third, as a consequen¢gg related to the drift velocityy, asJ=nqv, whereq is the
of these unusual boundary conditions we are forced t0 eXsharge anch is the number density of the charge carriers,
pandV(x,y) in terms of nonorthogonal basis functions. Nev- 3ssumed to be constant. Thus the generalization of4g.
ertheless, a series solution f¥f(x,y) can be obtained by valid with a magnetic field present, is
straightforward methods. This combination of unusual math-
ematical features and a simple physical situation will, we E+— JxB=pJ (5)
hope, make the problem of some interest to readers of this nq '
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Fig. 2. Balance of forces corresponding to E5): (a) general situation(b)

Fig. 1. Sample geometry showing the axes, top and bottom boundary cortt the right edgey) is straight down sincd, =0, (c) at the top edge is
ditions, and the magnetic field into the page. The points labeleddQ are  Straight down sincg=H is an equipotential.
symmetry points.

The parametek is also related in a simple way to a pa-
rameter called the Hall angle,,, defined as the angle be-
Let us consider the standard problem, in which the magtweenJ and E. From the vector triang?eof Eq. (5), illus-
netic field is Qerpendicular to the plane of the conductingtrated in Fig. 2, we see that the Hall angle is simply
sheet:B= —Byz. In general, within the sampld, may have

— —1 — —1
both x andy components. Evaluating the cross product in Oy=tan “(Bo/png)=tan = \. (13
Eq. (5) we obtain The magnitudes and directions dfandE may well be dif-
B ferent at different places in the plate. Nevertheless, the angle
E,—pJy— -0 J,=0, (6)  On between] andE is everywhere the same.
ng The vector diagram provides a more physical way of un-

B derstanding the boundary conditions. Figure 2 illustrates the
E,—pdy+ -0 J,=0. (7)  Vvector triangle ata) an arbitrary position in the rectanglé)
n a point on the right edge, arid) a point on the top edge. On
Solving Egs.(6) and (7) for the components of the current either the left- or right-hand edgdsmust be parallel to the

density we havé edge, thu€ makes an angléy with respect to the boundary
[Fig. 2(b)]. This is precisely the condition expressed by Eg.
_(Ex_)‘Ey) ®) (11). The top edge is an equipotential, Eanust be perpen-
X p(1+N?) dicular to the boundarjfFig. 2(c)].

Note that a statement frequently encountered in textbooks
J :(EVH‘Ex) 9) stands in need of a correction. It is often asserted that in the
y p(1+)\7) ' steady state the magnetic force on the charge carriers just
balances the horizontal component of the electric force
(which is due to the Hall potentinbnd that, consequently,
#e current flows parallel to the axis. This is so only at the
left and right edgesas in Fig. 2. Elsewhere in the platd,in
general has ax component and the magnetic force is not
Ex(0y)=AEy(0y), (20 entirely in thex direction. However, for the case of small
magnetic field or long, thin samples, it is a reasonable ap-
Ex(L,y)=AE,(L.y). (11 progimation. We shalglJinvestigatgthe current distribution ir?
In terms of the electric potential we hatg=—dV/9x and ~ Sec. VL.
E,=—0dV/dy, so at bothx=0 andx=L we require

oV )\&V
ax ooy’

wherehx=Bg/pnq.

The requirement that no current leave through the edges
x=0 and x=L means thatJ,(0,y)=0 and J,(L,y)=0.
These conditions, along with E¢), result in

lll. STATEMENT OF THE BOUNDARY-VALUE
(12 PROBLEM

. . - The mathematical problem is as follows: Fixdx,y) that
This is the desired boundary condition Wiix,y) at the left solvesV2V=0 in the region Gsx<L and —H<y<H sub-

and right boundariesNote that the slopes of all the equipo- t 10 the bound ditions:
tential curves are equal te- \ at the places where they meet Ject to the boundary conditions:
the left- and right-hand edges V(x,H)=V,, (14
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V(x,—H)=-Vg, (15) d2y

— =k?Y, (20)
NV N dy
X x:O_)\ W x:O, (16 where the separation constakf, is yet to be determined.
X(x) and Y(y) are, of course, real functions of their argu-
A \ NV 1 ments.
IX X=L_ Wl (7 We can easily show th&t must be real, and therefokeis

o a trigonometric function ok andY is an exponential func-
Note that\ depends orB, so the “no magnetic field” case i, of y. To see this puv=XY in Eq. (16) to find

corresponds ta =0. )

This is an unusual set of boundary conditions. Typically, ~ XoY=AY'Xg, (22)
either the potentia(Dirichlet), or the normal derivative of
the potentialNeuman, is known on each boundary, or else ' P . )
the problem is of the “mixed” type, with Dirichlet condi- argt;ument IK i dX/an'(\)( Dltsz/dygl. tTheEsut;s:LcrlthhO de
tions on part of the boundary and Neumann on the remaintOt€S évaluation ax=0. Diflerentiating 9.(21) with re-
der. In our case the boundary conditions for the left and righfPECt toy we get
edges are given in terms of both partial derivatives of the — x!y’=)vy”x,. (22)
unknown potentialyV(x,y). Note that the problem reduces to o . ]
the standard “mixed” type fo\=0. The general X»0)  Substituting Eq(20) in Eq. (22) we find
problem does not appear to be covered in the standard treat- XoY' =NK2Y Xq. (23
ments of potential theory.

where the prime denotes differentiation with respect to the

Then using Eq(21) in Eqg. (23) to eliminateY’ we have
IV. SOLUTION kz_( X5 )2

We seek solutions of Laplace’s equation that satisfy con- AXo
ditions (16) and (17). Any linear combination of such solu- Consequentlyk? is real and non-negative. Therefotle,is
tions will still satisfy (16) and (17). The appropriate linear real and from the forms of Eq$19) and (20) we see that
combination can then be built up to satisfy Eq$4) and  x(x) is trigonometric andr(y) is exponential.

(15). We will handle the two forms for solutions of Laplace’s  gqr 5 given value ok, the harmonic-exponential solution
equation separately. is then of the form

(24)

A. Linear solution V(X,y)= (A, coskx+ B, sinkx)(C,e+D,e ¥). (25

A linear function ofx or y will clearly be annihilated by
the Laplacian operator. The bilinear solutidf(x,y)=(a

+bx)(c+dy), with a,b,c,d constant, satisfies the differen-  \y/e now apply condition§16) and (17) to determine the

tial equation. However, it is easy to see that this form cannofg ; i il
. > o paration constaktand to restrict the range of possibilities
satisfy the boundary conditions Eq36) and(17). Similarly for the constants of integratioh,B,C,D. First, applying Eq.

V(x,y)=(a+bx)f(y) or (c+dy)g(x), wheref andg are .
arbitrary functions, cannot satisfy Eq46) and(17). We are (16) to Eq. (25), we find

C. Applying the boundary conditions at x=0, L

therefore left with the possibility of a linear function &f Bk_)\ CeY—De W -
plus a linear function of. At the left or right edge, the slope A, " CeYrD e ™ (26)

of the equipotential curve is-\. Thus the linear solution
must be of the form

V(x,y)=a\(x+b)+ay+c,

Thus the right side of Eq(26) cannot be a function oy.
Hence, either

Ck=0, Bk: _)\Ak, (27)
wherea,b,c are constants. We know from elementary con-

siderations that in the absence of a magnetic field the sol’

tion is V(x,y)=Vyy/H. The case of “no magnetic field” D=0, B =\A. (28
corresponds tao=0 soa=Vy/H andc=0. The linear so-

lution is therefore of the form For a specific value df, the most general solution is a linear

combination of both possibilities. Thus we have

V -
V(xy)= 13 INX+b) +y]. (18) Vi(x.y)=R(coskx+ sinkx)e"”
+S(coskx—X\ sinkx)e ™, (29
B. Harmonic-exponential solutions whereR,=A,C, (for the case,=0) andS,=A,D (for the

For the nonlinear forms we assume separable solutions §@S€C«=0). -
the form V(x,y)=X(x)Y(y). In the usual way, Laplace’s If we impose condition(17) on Eq.(29) and note that the

. k 7k . . e
equation then separates into two ordinary differential equal®'ms ine” ande™ must satisfy this condition separately,

tions: we find
d2x (1+A?)sinkL=0. (30)
— =—k2X, (19 . . . .
dx Hence sirkL=0 andk is restricted to valuek, given by
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k,=nw/L,
wheren=1,2,3,... .

The most general solution satisfying the boundary condi
tions at the left and right edges is therefore Et8) plus
expressions of the form of E¢R9), with k,, restricted by Eq.

(31):

Vo
V(xy)= 22 [N(x+b)+]

+ 2>

[Ry(coskx+\ sin k,x)eknY
n=1223,...

+S,(cosk,x—\ sin k,x)e knY]

or, recombining terms,

[coskx(R,eY

Vo
V)= INxED) Y]+ 3

+S,e k) + X sin kyx(R,eY—S,e )],

D. Exploiting a symmetry

To proceed further, let us note a symmetry of the system
of Egs. (1), (14), (15), (16), and(17). These have the prop-
erty thatV— —V whenx—L —x andy— —y. This means,

(31

with the same magnitude but opposite sign. Imposing this
symmetry on Eq(33) requires thab= —L/2. Furthermore,
both the cosine and sine terms in the sum of &8 must
satisfy the symmetry separatelfRemember thak is a free
paramete). Now, sincek,=n/L,

cosk,(L—x)=(—1)" cosk.X,
sink,(L—x)=(—1)""* sin k,x.

Requiring that each term in E¢33) satisfy the symmetry
V— —V whenx—L—x andy— —y then leads tdfrom the
cosine termp

(= 1)"(Roe™ 0+ S;e) = — Ryek/ — 507,

(32)
and to(from the sine terms
(-1 YR Y-S V)= — R, eknV + S e kY,
Adding these two equations, we find
(33 Sn:(_l)n+1Rn- (34
Two cases arise:
for odd n, =R,,
Sh=Ry 35
for evenn, S,=—R,.

Using Eq.(35) in Eq. (33) we arrive at our final form of the

for example, that point® and Q in Fig. 1 have potentials solution:

L

where T,,=2R,, (for m odd and U,=2R, (for n even.
From here on we shall use the subscripto label the odd
and thesubscriptn to label the even — -0

coefficientsT,,T,,...
coefficientsU,,U,,... .

E. Applying the boundary conditions aty==+H

We now require that thd,, and U,, be chosen so that
V(x,y) satisfies the top and bottom boundary conditions

V(x,=H)=*V,. Thus we require

Vo L
iVO:ﬁ A X— E +H
mar mar
+ T, cO TX cos T H
m=1,3,...

o (m . mar
=\ sm(Tx)smr<TH”
. nw . nﬂ-H
T COo TX Sin T

(N I’HTH
+ X\ sin TX Ccos T
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{m’ﬂ ) r(mﬂ
C0s — X |cCOos Ty

. nmw
+X\ sin TX cos Ty

T8N si”(? X>Smr(¥ y”

n

: (36)

Adding and subtracting the two versions of E§7) gives

3

T mar mar H
s m CO TX Ccos T

I

H

v n
+\ 2, U, sin — x|cosh— H (38)
n=24,.. L L
and
m
0=\ >, Tn sm( 7Tx)sinf(—wH)
m=13,... L L
n n
+ > U, cos(—w x)sinl—(— H) (39
n=24,.. L L

In Egs.(38) and(39) we have on the left-hand side a func-
tion of x and on the right side its expansion in a series of
sines and cosines of multiples afx/L. It is important to
note that these functions of x do not form an orthogonal
basis on the intervaD<sx<L. The functions cosfmx/L)
and cosf mx/L) are orthogonalfor m#m’) on the interval
0<x=<L. Similarly, sinfmx/L) and sinf’ wx/L) are orthogo-

(37
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nal. But sinimx/L) and costmx/L) (with n even andnodd)  through ordei 2, which is certainly adequate for comparison

are not. These functions are orthogonal on the intervawith most experimental results.

0=<x=2L, but are not orthogonal on the intervak&=<L.

This is another unusual feature of this simple Hall effect

problem. The nonorthogonality of the basis functions resultss - sojution to any order in A

from the boundary conditions Eqél6) and (17). We must

be careful in evaluating the expansion coefficients. The solution to any order ih may be obtained by itera-
(To understand the nonorthogonality an analogy might beion with Egs.(40) and(41). A more systematic approach is

helpful. Consider writing a vector in terms of a particular setas follows. LefT denote a vector formed from tfg,, andU

of nonorthogonal basis vectors and then determining thg vector formed from théJ . :

components. Let a vector in the plaie,be written in terms

of a pair of unit vectorsl ando which are at an angla. We Ty 0
can writeA=A, U+ A 0. To find the coefficient we take the 0 U,
dot product ofA with the appropriate basis vector. For ex- | T3 | O
ample to find A, we have G-A=A,U-U+A,U-v=A, T={o| U= U, (44)
+A, cosa. We do not get just the coefficieAt, ; A, is now Ts 0
mixed in as well. The presence of the other coefficient is due
to the lack of orthogonality. For the usual case with orthogo- ]
nal basis vectora:= 7/2 and the second term vanishes.  Then Egs.(40) and(41) may be written
Multiply Eq. (38) by cosm’'mx/L) and integrate fronx T=T°+0U, (45)
=0 to x=L, with the result
U=QT, (46)
4Vl -
Th= ZAmZ cosmmH/L) where the components af are
4N nwH n 4VolA for m odd
R —y ngh U, cos)‘(T) g T0 = { w?Hm? costimmH/L) (47)

0 otherwise.
(40)

Multiply Eq. (39) by cos@’ mx/L) and integrate fronx=0 to

The matrix elements o are

x=L to obtain Omn
— 4N maH m 4\ cosiinwH/L) n
- i for m odd andn even
Un a sinh(naH/L) m:Em’me sm)—( L ) m2—n2" —{ @ cosikmmH/L) n>—m?
(41 0 otherwise,
These are our conditions on the coefficiefitg,and U,, . (48)

No_te that they involve coupl_ed infinite sums. The odd Coef'and the matrix elements & are
ficients, T,,, are expressed in terms of the even onggs,
and vice versa. This results from the failure of our basis?nm
functions to be orthogonal.
The solution for the potentidl(x,y) is therefore given by .
Eq. (36) with T, andU, determined by Eq40) and (41). =¢ msinf(n7H/L) m
0 otherwise.

—4\ sinhim#7H/L) m
2

2 for m odd andn even

(49

H 2
F. Solution to order A Substituting Eq(46) into Eq. (45), we have

For typical metals in experimental situatiGnsh T=T4+00T (50)
~0.005-0.1. This suggests that E§40) and (41) can be
solved iteratively. Looking at Eq40) we see that to first
order in\ we need only the first term. The second term has (|- 0)T=T°, (51)
an explicit\ and depends on tHg,,, all of which involveA.

Therefore. to first order in the T are wherel is the identity matrix. Thus the solution far is
’ m

Tm=— 24VOL)\ . (42 e 2 3 0 2

m?Hm? cosimmH/L) T=(1+00+(00)"+(0Q)°+--)T". (53
Substituting Eq(42) into Eq. (41), we find Now, as Eqs(48) and(49) show, both® and() are propor-
16V LA tanHmaH/L) tional to \. Equation(47) shows thafT® is also proportional

Up=—5—— . (43 to \. HenceT only contains elements with odd powers)of

7°H sinh(n@H/L) m=75.. m(m2—n?) And thus, by Eq.(46), U contains only even powers of.
The truncated solutiofito order\?) given above, with the
T, andU, given by Egs.(42) and (43) is equivalent to

The potentiaM(x,y) is therefore given by Eq.36) with T,
andU,, given by Egs(42) and(43). This solution, with the
coefficients cut off as in Eqs(42) and (43), is correct T=T9, (54)
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Fig. 4. Equipotential curves for the upper portion of the sample; this is an
enlargement of Fig. 3 with the same parameters. Top to bottom the contours
shown correspond t¥'=0.99,0.98,0.97,... .

-0.5
no magnetic field the equipotentials are horizontal lines.
With a magnetic field the equipotentials are clearly curved.
The equipotentials get closer together as one approaches the
upper left and lower right corners. This corresponds to a
stronger electric field in these regions. However, as expected
from the boundary conditions, the equipotentials intersect the
left and right edges at a constant angle, independent of

X This can be seen in the close-up of a portion of the conduc-
tor, corresponding to the upper part, €8<1, as shown in
Fig. 4. From top to bottom the contours correspondvto

Fig. 3. Equipotential curves over the whole conductor. From top to bottom:O'ggy 0.98,0.97,....

the contours shown correspondute- 1.0,0.95,..5-0.95-1.0. The potential

was determined as discussed in the text with0.2,Vo=1,H=1,L=1.

AW

0 0.2 0.4 0.6 0.8 1

VI. THE CURRENT DISTRIBUTION

U=QTO. (55 With Eg. (36) in hand for the potential, it is straightfor-
ward to investigate the current distribution. Using E@.
and(9) and taking appropriate partial derivatives\oto get
the components dt we find

Although for real experimental situationsis a small param-
eter, in principle one may solve the problem by matrix in-
version, using Eq(52), even for large\. In this case, one

must truncate the matrices to a finite number of elements in 1 mar
advance. Jye== 2 Ty—— sinmax/L)coskmmy/L)
P m=13,.. L
V. NUMERICAL RESULTS 1 nmw )
+= > U, — sin(nax/L)sinh(nmy/L), (56)
To get a physical sense for our solution we evaluate the p n=24.. L
potential and the current density numerically. The solution is V
given by Eq.(36) and the expressions for the coefficierks, Jy=-— H_O
andU,,, are given by Eqs(52) and (46), respectively. As p
the coefficients are infinite in number we truncated the vec- 1 mar
tors by taking 20 elements in both and U and the corre- —= > Tn—— cogmmx/L)sinmay/L)
sponding® and Q were 20< 20 matrices. The sums in Eq. p m=13..
(36) went tom=19 andn= 20, respectively. Reasonable val- 1 na
ues of the parameters were chosen to show representative ) n=§2:4 U, = cognmx/L)cosinmy/L).
behavior. In what follows we lex=0.2,Vy=1, H=1, and o
L=1. These last three parameters just set the scale and are in (57
arbitrary units. It is possible to perform two easy tests to verify tidats

Equipotential curvesV=const, for the conductor are calculated is consistent with the original boundary condi-
shown in Fig. 3 forv=1,0.95,...,-0.95~ 1. For the case of tions.
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First, and most obviously], vanishes ak=0 andx=L. y

This is consistent with the boundary condition illustrated by !
Fig. 2(b). AR IR ER IR TR
Second, we shall show that gt= +H, J,=—\J,. This
means that at the top or bottom edge, the current makes an R IR LN B T B
angle #y=tan '\ with the normal to the boundary, as
shown in Fig. 2c). That this condition is met by Eq$56) R BT LR R T B
and(57) is not immediately obvious. Therefore, differentiate
Eq. (37) with respect tax and divide byp to obtain 0.5 B I T LR IR B I I
_ Voh 1 mm) _(m7 mm PEobb P b
O_p_H e ,L_)TmT sm(T X)COS}‘(T H)
| Forodon I AR A
o cod ™ x| sind ™ 1
S TR AL o A
1 nw nw nw 0 |
S 2T T i T 2N N I N B T A
+n:§2;4“" pUn 3 +sm( - x)sm)-( 3 H) |
A I R T A
+\ co r]—Trx cos)‘(n—WH (58
L L ' T O R T T A
Evaluate Eq(56) aty=*H, and to the resulting equation ‘ A
add Eq.(58) to obtain -0.5
VoA A mm L I R T T T U T T T I
(X, H)= —F- > T, —— cogmax/L)
PR P m=13,. I T T R A O
) A nwT
xsinhmmH/L)+ = >, U, -— L T T T T R T R S S S
P n<2a,. L
-1
x cognax/L)cosinaH/L). (59) A R R T R R TR A
Comparing Eq(59) with Eq. (57) evaluated ay=*+H, we 0 0.2 0.4 0.6 0.8 1 X
see indeed that
Jy(X, £H)=—=AJy(X,=H) (60) Fig. 5. Vector field of the current density on a uniform grid. The arrows

indicate relative magnitude and direction. The three solid lines indicate flow
for all x. Thus all across the top boundary, the current entersnes and correspond to the mean path of a chafHee flow line is every-
at an angled,, from the normal. where tangent to the local) Calculated as described in the text with
It is worthwhile to note one final point about tyecom- ~ =02 Vo=1,H=1,L=1.
ponent of the current. Integrating E&.7) across a horizontal

section gives the net current in tiedirection: indicated by the length. Along the top edge the magnitude of

L — VLt the current varies with positior; however, the current en-
Iy:tf Jydx=—p-—, (61)  ters the sample with the same angle everywhere along the
0 P top and leaves with the same angle everywhere along the
wheret is the thickness of the conducting plate. This is justbottom. Notice that this implies that more charge enters the
the current we would expect in the absence of a magnetitPper left than the upper right. Correspondingly, more
field. This is why the standard elementary treatments, whicigharge leaves the lower right than the lower left. Note that
ignore the existence of a transverse current, nevertheless ofere is an overe}!l flow of ch:,;}rge from left to right. Also
tain reasonable behavior. Although the current is not everyshown are three “streamlines.” These flow lines are every-
where in they direction, the ney current does not depend Where tangent to the locdl and correspond to paths of in-
on the magnetic field. dividual charges. Charge entering along the left edge contin-
To obtain numerical results for the current density we usé/€S Straight down to the bottom. Charge entering in the
the same procedure for determining the coefficidntsand central portlon of the t(_)p edge follows a curved path with a
U, as described above for the potential calculation. Thd!€t transport in _the< direction. The amount of net left to
_ _ right deflection is the greatest for charges entering at the
same parameters were also usee;0.2,Vy=1,H=1, and
o T center of the top edge.
L=1. In addition we have lgi=1. (This just sets the overall
scale and we are interested in relative behay\die evaluate
Egs.(56) and(57) with the coefficientsT,, andU,, given by
Egs.(52) and_(46). In Fig_. 5 we s_how the_: vector fiel_d fo_r the  Most textbooks of electromagnetic theory warn the reader
current density on a uniform grid of points. The direction of that if one abandons the standard classes of boundary condi-
the current density], at a point is determined by theandy  tions (Dirichlet, Neumann, or “mixed’, the solubility of
components. The relative magnitude of the current density ikaplace’s equation is no longer a foregone conclusion. How-

VII. CONCLUSION
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ever, physically plausible examples of nonstandard problems  5(©
appear to be rather few in number. In this paper we have X =0,
presented a solution to a nonstandard boundary value prob- x=0L
lem that arises naturally in the context of a surprisingly (1) (0)
X e Y aVv
simple Hall effect situation. = ' (66)
X x=0,_L ﬁy x=0,L
v FAVAEY)
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APPENDIX I: REDUCTION OF THE PROBLEM TO
AN INFINITE NUMBER OF PROBLEMS OF
STANDARD TYPE

Because our boundary-value problem is not of standard

type, it is not immediately obvious from a mathematical
point of view why it should be soluble. It is therefore worth
investigating the relation between our problem and problem

given in terms of the derivative of the solution at the previ-
ous order.

V(O (x,y) solves Laplace’s equation subject to the bound-
ary conditions

VO(x,=H)=+V,
VAR
ax

(Dirichlet on top and bottom
(67)

=0 (Neumann on left and right sides

x=0,L

This can be done by inspection and yield&%(x,y)
=V,y/H. Note this is just the. =0 part of our solution, Eq.
636).

of the standard type. To do so, we shall expand the potential V(*)(x,y) solves Laplace’s equation subject to the bound-

in powers of the parameter and then successively solve it
to each order. Our problem then reduces to an infinite set
“standard” problems where the potential or its normal de

the problem to some order in and uses that solution as
input for the next higher order.

Consider Laplace’s equatioN2V=0 with the solution
written

V(x,y)=VO(x,y) +A\VE(x,y) + N2V (x,y) +- -,
(62

where superscripts indicate the corresponding ordeyr foir
each term. Now the boundary conditions aréx,=H)=

+Vg anddV/dx=NdV/dy atx=0,x=L. Itis instructive to
see how this works for the first few terms,

Vo=V O(x,£H)+ AV (x, = H)

ANV (X, =H)+- - (63)
and
ov® v oVv(?
A2 - }
IX IX IX ‘oL
Ak +2 N +\? N + } (64)
% % % x=oL

From Eq.(63) we equate the coefficients of successive
powers ofA on each side to obtain

VO(x,+H)=+V,,
VO(x,+H)=0, (65)
V@(x,£H)=0,....

Matching powers oh in Eq. (64) we see
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ary conditions

f -
_c\/(l)(x,iH)=0 (Dirichlet on top and bottom
rivative is known on the boundaries. Essentially one solves

NO| V)

ﬂy ‘x=O,L

| (Neumann on left and right sides
x=0,L

=known function ofy

=Vy/H. (68)
Solving this problem by standard methods yields
! L
Dy y)= N L
m' 69
xcod =y, (69
where
-8V, (_ 1)(m’+1)/2
1)_ 0
AL = (70)

m’?7? coshkm’ 7rL/4H)

This may be compared with the ordeterms of the solution
given above, in Eqs36) and (42). Denote the ordek- part
of this solution\V(x,y). Then from Eq.36) we have

L>
oA ol

X=3
(71)

where theTET}) are as given by Eq42):

4V,L

m?Hm? cosimmH/L) "

As Egs.(69) and (71) do not look much alike, it is worth-
while to show that they are exactly equivalent.

Vo
Vi) = (

mm
LY

(H—

m
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To see this, let us perform the following expansions. Ex-
pand sinhm’zr(x—L/2)/2H] from Eq. (69) in terms of the

functions cosfmx/L), on the interval 8&x<L, wherem
=1,3,5,...:
O J
o m'z L e
Sin ﬁ X E
_ 8m'LH 5 cosi{m’ 7wL/4H) mm v~ JxB/(ng)
N T m=1.3,.. m’2L%+ 4m?H? co TX N N
(72)
Similarly, expanding<x—L/2 from Eq.(71) on the interval 5
0=<x=L in terms of the same casx/L) yields E Ou pd
L 4L 1 mar
X_EZ_?m:ELB,... WCO{T X). (73)
-H_{ v JxB/(ng

Finally, expand cosinfmy/L) from Eq. (71) on the interval
—H=<y<H in terms of the cos(' wy/2H), where m’ ¢
=1,3,5,...: Oy

mm | maH 1+
cosh ——y | =cosh —-

(_ 1)(m’ +1)/2
m’(m’ %L+ 4m?H?)

pJ
16m°H?

w

r JxB/(ng)

Fig. 6. Specially chosen parallelogram geometry for the Hall effect as de-
scribed in Appendix II. The force triangle corresponding to &gis shown
on all four boundaries.

>

m’'=1,3,...

m’
X Co Wy .

If we substitute Eqs(73) and(74) into Eq.(71) we obtain

_ 64VoLH s (—1)m+DP2

V1(X,y)— 7_[,3 m:1x3y---m’:1,3,__, m/(m/2L2+4m2H2)

(74)

Note that now the triangle of forces takes the same orien-
tation on all four boundaries. This means that the boundary
condition for edges 3 and 4 is nok&=0. We must solve
Laplace’s equation subject to the boundary conditions

' V(x,H)=V, (edge 1 (76)
mmr m’ o
XCOS(T X) COS(W y) : (75) V(x,—H)=-V, (edge 2 (77)
And if we substitute Eq(72) into Eqg. (69), we obtain an v
expression foV)(x,y) which is identical to the right side ox 0 (edges 3 and W (78)

of Eq. (75). Thus Eq.(69) is indeed equivalent to the first-
order part of Eq(36).

The sequence of problems beginning with E@) and
(68) may be continued to whatever order is necessary. This
reduces our original probleigposed in Sec. I)lto an infinite
set of standard problems with “mixed” boundary
conditions!® From a mathematical point of view, this ex- everywhere inside the parallelogram. The equipotentials are
plains why our nonstandard problem should indeed have Borizontal lines.
stable, unique solution. From a practical point of view, how- From Egs.(8) and(9),
ever, the solution of this problem by reduction to a sequence

This is not a problem of the standard type, but in this case
the solution is trivial:

\Y
VO =1y (79

> PO : AV,
of standard problems is infinitely more tedious! = ° _
p y Jy Hp(1+\2) (80)
APPENDIX II: ACHIEVING A UNIFORM CURRENT -V
DENSITY JFW . (81

The complexity of the potential problem is drastically re- Thus J is everywhere constant and parallel to edge 3. The
duced if we adopt a different geometry. Let the conductingmagnitude of) is

plate be a parallelogram, as in Fig. 6. Two ed¢esnd 2

are parallel to thex axis. The other two edge8 and 4 make 3= Vo 2
an angle with they axis that is equal to the Hall angi, HPW '

=tan ! A=tan 1(By/pnq). Thus the geometry of the sample

must be preselected to match the material prope(tieend
n) and the externally imposed magnetic fieBl.

676 Am. J. Phys., Vol. 66, No. 8, August 1998

The combination Bi\1+\? is, of course, just the slant
height of the parallelogram, i.e., the length of edge 3, which
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is the actual distance that a charge must travel through thethe boundary, see Daniel ZwillingeiHandbook of Differential Equations
material. (Academic, San Diego, 198%. 2.
The total currentl is obtained by multiplyingd by the “This derivation can be found in Paul Lorrain, Dale R. Corson, and Fran-

] . : cois Lorrain,Electromagnetic Fields and Wavésreeman, San Francisco,
cross-sectional area of the samfitgken perpendicular td), 1988, 3rd ed., p. 408, and Niel W. Ashcroft and N. David Mermulid

tL cos6y=tL/y1+\“. Thus State Physic¢Saunders College Press, Philadelphia, 19@6. 11-14.
tLV, SSee Ref. 2, p. 24, and Gregory H. Wanniglements of Solid State Theory
=, (83 (Cambridge U.P., New York, 1959p. 195.
HP(l"‘)\ ) 5The force triangle is discussed by A. B. PippalMagnetoresistance in

which may be compared to E¢61). Although the surface ~Metals(Cambridge U.P., New York, 1989p. 4.
The following treatments, which are typical, explicitly assume that the

areas of the plates shown in Figs. 1 and 6 are the same ; . ) g ;
current flow is one dimensiond[This is a reasonable assumption for small

(ZHL)' the dlrecthn of current flow in Fig. 6.prog1uces an magnetic fields and long thin samplef. M. Fishbane, S. Gasiorowicz,
effective increase in length, and a decrease in width, of theang s. T, ThorntonPhysics for Scientists and EnginedRrentice Hall,
conductor. Englewood Cliffs, NJ, 1996 2nd ed., pp. 795—-796; Charles Kittéitro-
So, another way to express the limitations of the tradi- duction to Solid State Physigaviley, New York, 1996, 7th ed., pp.
tional elementary treatment is to say that it blurs the distinc- 164-166; Richard H. BubeElectrons in SolidgAcademic, New York,
tion between the geometries of Figs. 1 and 6. In the limit of 1992, 3rd ed., pp. 196-199.
long, thin samples and low magnetic fields the two are ap-°See, for example, Philip M. Morse and Herman Feshbadtithods of
proximately the same. It is possible that the geometry of Fig. Theoretical Physic§McGraw—Hill, New York, 1953, lan N. Sneddon,

6 may have some utility in experimental applications Mixed Boundary Value Problems in Potential The@wiley, New York,
) 1966; George ArfkenMathematical Methods for Physicistécademic,

San Diego, 1985 3rd ed.

The Hall Effect and Its Applicationsedited by C. L. Chien and C. R. . .
Westgate(Plenum, New York, 1976 See Charles Kittel, in Ref. 7. For coppéop. 24 and 160 q=1.60

— 19 — 8 3 — — 8 —
2E. H. Putley, The Hall Effect and Semiconductor Physi@over, New X107 C, n=8.45¢ 10 m™3, p=170<10"° 0 m, so A=4.35
York, 1969. X 10" 3B, with B, in tesla. So for a typical field of roughly 1-20 T we get

3See J. D. JacksoiGlassical Electrodynamicéwiley, New York, 1975, A~5X107%-10"1,
2nd ed., pp. 42, 121. “Mixed” can also refer to the case when a linear*°A technical issue remains in the question of convergence for the series on

combination of the potential and its normal derivative is specified along the right-hand side of Eq62).
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