The biosynthesis of C₅-C₂₅ terpenoid compounds

Paul M. Dewick *

School of Pharmaceutical Sciences, University of Nottingham, Nottingham, UK NG7 2RD

Received (in Cambridge) 8th November 2001 First published as an Advance Article on the web 22nd January 2002

Covering: 1998–2000. Previous review: Nat. Prod. Rep., 1999, 16, 97

NPR

This review covers recently-published experimental information on the biosynthesis of terpenoids in the range C_5-C_{25} . In addition to sections on the mevalonate and mevalonate-independent (deoxyxylulose phosphate) pathways, the review considers in turn hemiterpenoids, polyprenyl diphosphate synthases, monoterpenoids, sesquiterpenoids, diterpenoids, and sesterterpenoids. The literature from January 1998 to December 2000 is reviewed, with 248 references cited.

- 1 Introduction
- 2 Mevalonic acid
- 3 Hemiterpenoids
- 4 The mevalonate-independent (deoxyxylulose phosphate) pathway
- 5 Polyprenyl diphosphate synthases
- 6 Monoterpenoids
- 7 Sesquiterpenoids
- 8 Diterpenoids
- 9 Sesterterpenoids
- 10 References

1 Introduction

This report reviews the literature that was published during the three years 1998-2000 on the biosynthesis of terpenoids in the range C5-C25, and continues the coverage described in earlier volumes of Natural Product Reports.¹⁻³ C₃₀ and larger terpenoids are discussed elsewhere under triterpenoids and steroids, and carotenoids. This review describes the biosynthetic pathways, the enzymes and enzyme mechanisms involved, and information about genes encoding for these enzymes. A number of specific aspects that are more appropriate to other journals are not included here. Such topics as the regulation of terpenoid biosynthesis, particularly where the emphasis relates predominantly to steroidal compounds and higher terpenoids, the genetic control of biosynthesis, and biotransformations are not covered. The biosynthesis of meroterpenoids is also generally omitted. These compounds contain a terpenoid unit as part of a more complex structure, and are adequately treated in other reports according to the major substructure, e.g. alkaloids, polyketides, and shikimate metabolites.

It is now apparent that the mevalonate pathway, formerly regarded as the universal route to terpenoids and steroids, is much less prominent in secondary metabolism than the more recently discovered mevalonate-independent pathway *via* deoxy-xylulose phosphate. The fine details of this latter pathway are now being uncovered, and it is anticipated that the complete sequence will soon be known. Molecular biology is now being used routinely to provide access to biosynthetic enzymes, and this represents a major shift in terpenoid biosynthetic methodology. The molecular biology of plant terpenoid synthases has been reviewed.⁴

2 Mevalonic acid

The condensation of acetyl-CoA and acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) 1 is catalysed by the enzyme HMG-CoA synthase (Scheme 1). Two forms of the enzyme are known in mammals, a cytosolic enzyme which

Scheme 1 The mevalonate pathway. *Enzymes*: i, acetoacetyl-CoA thiolase (AACT); ii, HMG-CoA synthase; iii, HMG-CoA reductase (HMGR); iv, mevalonate kinase; v, phosphomevalonate kinase; vi, mevalonate 5-diphosphate decarboxylase; vii, IPP isomerase.

is the starting point for the mevalonic acid (MVA) pathway, and a mitochondrial enzyme which, together with HMG-CoA lyase, is involved in ketone body synthesis. The mitochondrial HMG-CoA synthase is not considered further in this report.

Earlier studies have indicated that a reasonably stable covalent acetyl-*S*-enzyme intermediate forms prior to condensation with acetoacetyl-CoA. This intermediate has now been detected using the avian enzyme. When it is incubated with [1-¹³C]acetyl-CoA there are large upfield shifts in the ¹³C NMR spectrum compared to those observed for free acetyl-CoA.⁵ This shift (20 ppm for C-1 and 7 ppm for C-2) is probably due to the transient production during acetyl-*S*-enzyme formation of a tetrahedral species with an sp³-hybridized carbon (Scheme 2). Rapid exchange between such a species (low in steady-state concentration) and a dominant acetyl-*S*-enzyme species (with an sp²-hydridized carbon) could account for a component of the upfield shift in the observed signal. These studies were

DOI: 10.1039/b002685i

extended using [1,2-13C2]acetyl-CoA, and conducting the reactions in H₂¹⁸O and ²H₂O.⁶ Analysis of the various shifts observed indicated the involvement of other tetrahedral intermediates, and therefore a minimal mechanism involving only a general base to deprotonate the C-2 methyl group of acetyl-Senzyme and a general acid that protonates the C-3 carbonyl of acetoacetyl-CoA cannot be tenable. The observations point to a more detailed mechanism and possible roles for acid/base catalysts as shown in Scheme 2. By replacing Glu-95 with Ala, catalytic activity of the enzyme was diminished by over five orders of magnitude.⁷ This amino acid replacement did not affect active site integrity with respect to initial formation of the acetyl-S-enzyme intermediate, or the terminal hydrolysis reaction, but was shown to have defective C-C bond formation. Evidence points to Glu-95 functioning as a general acid in the HMG-CoA synthase reaction. Functional evaluation of 11 invariant amino acids in the enzyme's active site using sitedirected mutagenesis has also been reported.8 Three mutant synthases, D99A, D159A, and D203A, all formed the acetyl-Senzyme intermediate very slowly. The impact of three distinct amino acids on reaction intermediate formation supports the mechanism for acetyl-S-enzyme formation that requires formation and collapse of a tetrahedral intermediate, though it is not yet possible to assign precise roles for these amino acids.

The next enzyme on the mevalonic acid biosynthetic pathway is HMG-CoA reductase (HMGR) which catalyses reductive deacylation of HMG-CoA to mevalonate (MVA) 3 via mevaldate 2 and employs two equivalents of NADPH as reductant Scheme 1. This enzyme activity provides an important control mechanism for the flow of metabolites into mevalonate and, especially, into steroid biosynthesis and its study continues to stimulate much research. Eubacterial HMGR from Streptomyces sp. strain CL190 has been purified, and the gene encoding for the enzyme cloned.9 The deduced amino acid sequence revealed several limited motifs which were highly conserved and common to eukaryotic and archaebacterial enzymes. Based on amino acid sequences, two distinct classes of HMGR can be differentiated.¹⁰ Genes that encode class I enzymes are present in all eukaryotes, in many archaea, and in some streptomycetes. Genes encoding class II enzymes are present in some eubacteria. The mvaA gene in Staphylococcus aureus encodes a class II HMGR.¹¹ Unlike most other HMGR enzymes, the S. aureus enzyme exhibits dual coenzyme specificity for NADP(H) and NAD(H), with NADP(H) preferred. pH profiles suggested His-378 and Lys-263 function in catalysis. The isolation and overexpression of the gene encoding HMGR in *Leishmania* major has been reported.¹² The protein lacks the membrane domain characteristic of eukaryotic enzymes, but exhibits sequence similarity with eukaryotic reductases. Plant genes encoding for HMGR in mulberry (*Morus alba*)¹³ and *Tagetes erecta*¹⁴ have also been isolated and characterized. Two cDNAs were found in marigold, one of which encoded a truncated form of the enzyme. Antisense expression of *Arabidopsis thaliana hmg1* gene in tobacco (*Nicotiana tabacum*) was found to decrease general isoprenoid levels.¹⁵

The crystal structures of two non-productive ternary complexes of HMGR from Pseudomonas mevalonii with HMG-CoA/NAD⁺ and with MVA/NADH have been determined.¹⁶ In the structure of the apoenzyme reported earlier, the last 50 amino acid residues of the C-terminus (the flap domain), including the catalytic residue His-381, were not visible. The structures of the ternary complexes reported here reveal a substrate-induced closing of the flap domain that completes the active site and aligns His-381 with the thioester of HMG-CoA. Lys-267 also appears to be involved in catalysis, its role as a general acid/base being postulated in Scheme 3. Lys-267 facilitates hydride transfer from reduced coenzyme by polarizing the carbonyl group of HMG-CoA, and subsequently of bound mevaldate. In subsequent studies,¹⁷ site-directed mutagenesis was employed to investigate this active site lysine. Replacement of Lys-267 with Ala, His, or Arg resulted in total loss of activity. Then, replacement of Lys-267 with Cys, followed by chemical derivatization allowed the introduction of lysine analogues aminoethylcysteine and carboxyamidomethylcysteine. The latter derivative was inactive, though the former exhibited high catalytic activity. That aminoethylcysteine, but not other basic amino acids, can replace the function of Lys-267 underlines the importance of this residue, and the requirement for a precisely positioned positive charge at the enzyme active site. HMGR from Pseudomonas mevalonii is a class II enzyme. If the proposed mechanism involving Lys-267 is general, class I HMGRs should also possess an active site Lys, and indeed, sequence analysis shows three lysines are conserved among all class I enzymes.¹⁸ The three conserved lysines of Syrian hamster HMGR were mutated to Ala; all three mutant enzymes had reduced but detectable activity. Sequence alignments suggested Lys-734 of the hamster enzyme as the most likely cognate of P. mevalonii Lys-267, and it is proposed that HMGRs of both classes employ a similar catalytic mechanism involving an active site lysine.

Sequence analysis of flanking regions of the *hmgr* gene in *Streptomyces* sp. strain CL190 revealed five open reading frames, orfA-E, which showed similarity to those encoding eukaryotic and archaebacterial enzymes from the mevalonate pathway.¹⁹ An *E. coli* transformant with *hmgr* and *orfABCDE* was shown to grow in the presence of fosmidomycin, a potent inhibitor of the mevalonate-independent pathway (see Section 4), and to produce ubiquinone from labelled acetate with a labelling pattern characteristic of the mevalonate pathway, though the mevalonate pathway is intrinsically absent from *E. coli*. The *hmgr* gene and *orfABCDE* are thus responsible for the mevalonate pathway and constitute a gene cluster in *Streptomyces*. Based on known sequences, the identities of *orfA* to *orfE* were deduced.

3 Hemiterpenoids

Mevalonate kinase catalyses the first of the ATP-dependent phosphorylations of mevalonate to mevalonate 5-phosphate 4, then mevalonate 5-diphosphate 5 is produced by the further action of phosphomevalonate kinase. These reactions lead up to formation of isopentenyl diphosphate (IPP) 6 and dimethylallyl diphosphate (DMAPP) 7, the biogenetic isoprene units (Scheme 1). Purification of mevalonate kinase from the plant *Catharanthus roseus* has been reported.²⁰ Kinetic studies indicated an ordered sequential mechanism of action, in which mevalonate was the first substrate to bind and ADP was the last

product to leave the enzyme. Activity was dependent on the presence of divalent metal ions, Mg²⁺ and Mn²⁺ being best and equally effective. The activity was strongly inhibited by farnesyl diphosphate. The *Arabidopsis thaliana* gene encoding for mevalonate kinase has been cloned and characterized.²¹ Phosphomevalonate kinase activity from *Catharanthus roseus* cells has been partially purified.²² This enzyme was also dependent on the presence of divalent metal ions, with a preference for Mg²⁺.

The mechanism of mevalonate 5-diphosphate decarboxylase still awaits full clarification. Whilst a third molecule of ATP is required for the transformation, there had appeared to be little evidence for phosphorylation of the tertiary hydroxy group, and a mechanism in which an ATP molecule facilitated the decarboxylation–elimination had been proposed (Scheme 4).

Scheme 4 Enzyme: mevalonate 5-diphosphate decarboxylase.

However, more recent studies (see ref. 1) had given some evidence for involvement of the 3-phosphate intermediate **8**. Sequencing of a full-length cDNA encoding for mevalonate 5-diphosphate decarboxylase in *Arabidopsis thaliana* has been reported.²³ The deduced amino acid sequence shared about 55% identity with yeast, human, and rat enzymes. When expressed in yeast, the *A. thaliana* cDNA complemented strains deficient in the enzyme, though wild-type sterol content was not fully restored.

Isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IPP isomerase) catalyses the 1,3-allylic rearrangement reaction converting IPP into DMAPP *via* a postulated two-base cationic mechanism (Scheme 5). In eukaryotes and yeast, the enzyme removes the *pro-R* proton from C-2 of IPP in the forward reaction, and in the reverse reaction a proton from water is delivered to the *re* face of the C-2-C-3 double bond. Since many bacteria and plant chloroplasts have been shown to employ the mevalonate-independent deoxyxylulose phosphate (DXP) pathway to terpenoids (see Section 4), the stereochemical features of this interconversion have been reinvestigated using enzyme from *E. coli*, an organism which utilizes the DXP pathway.²⁴ It has been found that enzymes from both *E. coli*

Scheme 5 Enzyme: IPP isomerase.

and *Schizosaccharomyces pombe* catalyse the removal of the deuterium from labelled (R)-[2-²H]IPP, *i.e.* the same stereochemistry as observed for *Saccharomyces cerevisiae* and rat liver enzymes. When the enzyme was incubated with (R)-[2-²H]IPP in the presence of avian FPP synthase, this gave FPP without any deuterium labelling. The eukaryotic FPP synthase is known to remove the *pro*-*R* hydrogen from IPP during chain elongation. The reverse reaction was investigated by incubating the enzyme with unlabelled DMAPP and ²H₂O in the presence of GPP and avian FPP synthase, so that the newly formed [2-²H]IPP was immediately converted into FPP. No deuterium labelling was observed in the product. Thus, the reverse reaction also displays the same stereochemical features as eukaryotic isomerases.

Two cDNAs encoding IPP isomerase in the green unicellular alga Haematococcus pluvialis have been identified.25 Deduced amino acid sequences for the two enzymes were 95% identical; only the smaller of the two proteins was implicated in carotenoid accumulation in the cytoplasm. The presence of isoforms of IPP isomerase in cell cultures of several plant species from the Rubiaceous plants *Cinchona robusta*, *Morinda citrifolia*, and *Rubia tinctorum* has been reported.²⁶ Additional isoforms appeared inducible, and corresponded to the accumulation of anthraquinones requiring DMAPP for their biosynthesis. The cyanobacterium Synechococcus sp. strain PCC6803 is deficient in IPP isomerase activity, consistent with the absence of an obvious homologue for the enzyme in its genome.²⁷ Incorporation of labelled IPP into terpenoids (primarily C₂₀) in cell extracts occurred only upon priming with DMAPP. Isoprenoid synthesis in Synechococcus does not appear to involve interconversion of IPP and DMAPP, and it has been suggested that these materials are synthesized separately (compare similar conclusions in Section 4).

Isoprene **9** is traditionally associated with the terpenoids as the hypothetical building block, but this hemiterpene is also a natural product emitted by a number of plants, often in very large quantities. Isoprene is formed from DMAPP *via* the action of isoprene synthase which catalyses elimination of diphosphate (Scheme 6). The isolation of thylakoid-bound and

soluble forms of isoprene synthase from willow (*Salix discolor*) has been described.²⁸ When solubilized, the thylakoid-bound enzyme exhibited similar catalytic properties to the soluble stromal enzyme, and both contain essential cysteine, histidine and arginine residues, as do other isoprenoid synthases. A methylbutenol synthase activity that catalyses formation of methylbutenol **10** from DMAPP has been detected in needles of grey pine (*Pinus sabiniana*) and partially purified.²⁹ Like other prenyl diphosphate-utilizing enzymes it was dependent on the presence of a divalent cation, preferably Mn²⁺, for activity. Based on the analogous biosynthesis of linalool from GPP, a mechanism involving hydration of the DMAPP-derived allylic cation (Scheme 7) is most probable. GPP is not a substrate for

methylbutenol synthase, so the enzyme is distinct from linalool synthase. Like isoprene, methylbutenol is another volatile hemiterpene released from trees, in this case several pine species, and its formation also appears to be regulated by lightdependent reactions in the chloroplast.

4 The mevalonate-independent (deoxyxylulose phosphate) pathway

Considerable evidence has now accumulated that the mevalonate pathway is employed much less frequently in the biosynthesis of terpenoids than is the newly-discovered mevalonate-independent pathway via 1-deoxyxylulose 5-phosphate. During the period of review, there have been many further reported examples of its operation, and most of the steps leading from the primary precursors pyruvate and glyceraldehyde 3phosphate are now delineated, though the late steps concerned in the formation of IPP and DMAPP are not yet clarified. There are now several terminologies commonly in use for this pathway, including mevalonate-independent pathway, nonmevalonate pathway, glyceraldehyde 3-phosphate/pyruvate pathway, deoxyxylulose phosphate (DXP or DOXP) pathway, and methylerythritol phosphate (MEP) pathway. There has been an attempt to obtain agreement that the latter MEP nomenclature should be adopted since MEP is the first committed terpenoid precursor, whilst DXP is also used for the biosynthesis of thiamine and pyridoxol. So far, there is little evidence for any general usage of the MEP terminology. Whereas the mevalonate pathway enzymes are localized in the cytosol, the DXP pathway enzymes appear to be plastidrelated. These features broadly account for the observed operation of the two pathways in various classes of terpenoid. Thus, the mevalonate pathway provides cytosolic metabolites, particularly triterpenoids and steroids, plus some sesquiterpenoids. The DXP pathway leads to plastid-related metabolites, monoterpenes and diterpenes, some sesquiterpenes, tetraterpenes (carotenoids), and the prenyl side-chains of chlorophyll and

plastoquinones. There are examples of cooperation between the cytosolic and plastidial pathways, especially in the biosynthesis of stress metabolites. The DXP pathway is not known to operate in mammals.

The first reaction of the pathway is a transketolase-like condensation between pyruvate and D-glyceraldehyde 3-phosphate to form 1-deoxy-D-xylulose 5-phosphate (DXP) 12 (Scheme 8). This involves condensation of (hydroxyethyl)thiamine diphosphate 11, derived from pyruvate, with the aldehyde group of glyceraldehyde 3-phosphate. A gene dxs from E. coli encoding DXP synthase has been cloned and characterized.³⁰ The gene was part of an operon that also contains the gene *ispA* which encodes FPP synthase. The enzyme shows features of a typical binding site for thiamine diphosphate, and a histidine residue that has been proposed to participate in proton transfer in transketolase reactions. However, a motif that appears to be involved in substrate binding in transketolases is not conserved in DXP synthase. Cloning of the gene from peppermint (Mentha X piperita) has also been reported, together with expression of the functional protein in E. coli.³¹ This enzyme contains a proposed plastid-targeting sequence. Excluding this targeting sequence, the deduced amino acid sequence showed very high identity to DXP synthase enzymes from E. coli and Arabidopsis thaliana, and also to proteins from the photosynthetic bacterium Rhodobacter capsulata and the cyanobacterium Synechocystis sp. PCC6803. These appear to form a new class of transketolases distinct from the well-characterized transketolases involved in the pentose phosphate pathway, and their extensive sequence similarity suggests that they are all DXP synthases. Two pepper (Capsicum annuum) cDNAs encoding transketolases have been characterized.³² One of these is primarily involved in plastidial pentose phosphate and glycolytic cycle integration, whilst the second encodes DXP synthase, and is highly expressed during carotenoid biosynthesis in pepper. A dxs gene in the unicellular cyanobacterium Synechococcus leopoliensis (Anacystis nidulans) has been identified and expressed in E. coli, resulting in increased synthesis of DMAPP.33 Streptomyces sp. strain CL190 utilizes both mevalonate and mevalonate-independent pathways to terpenoids. The dxs gene from this organism has been cloned and overexpressed in E. coli to yield recombinant enzyme.34 This is a soluble enzyme, and most likely a dimer. Except for pH optimum, its enzymic properties were the same as those of recombinant E. coli DXP synthase, also overexpressed and purified. A gene CLA1, previously isolated from Arabidopsis thaliana, has now been shown to encode DXP synthase.³⁵ In addition to demonstration of the enzymic activity, it has also been shown that this activity complements an albino cla1-1 mutant. A single base change in the CLA1 gene is the cause of the chs5 mutation in Arabidopsis, resulting in temperature sensitivity.³⁶ Application of 1-deoxy-D-xylulose rescues the defect in the chs5 mutant. An E. coli strain engineered to produce the carotenoid lycopene was further transformed with dxps genes cloned from *Bacillus subtilis* and *Synechocystis* sp. 6803.³⁷ This resulted in increased levels of both lycopene and ubiquinone-8 compared to controls.

DXP is transformed into 2-C-methyl-D-erythritol 4-phosphate (MEP) 14 in the next step of the pathway. The involvement of this intermediate was demonstrated by preparing mutants of *E. coli* and selecting three that required 14 for growth and survival.^{38,39} All the DNA fragments which complemented this synthetic defect were found to contain a *yaeM* gene (in later studies referred to as *dxr*). The deduced amino acid sequence for the encoded protein showed significant homologies to hypothetical proteins with unknown functions from several eubacterial species. The purified recombinant *yaeM* gene product was overexpressed in *E. coli* as a tetramer, and found to catalyse formation of MEP from DXP in the presence of NADPH. NADH was a much poorer reductant, and the enzyme also required a divalent cation, preferably

Scheme 8 The deoxyxylulose phosphate pathway. *Enzymes*: i, 1-deoxyxylulose 5-phosphate synthase (DXP synthase); ii, 1-deoxyxylulose 5-phosphate reductoisomerase (DXP reductoisomerase); iii, 4-diphosphocytidyl-2-*C*-methyl-D-erythritol synthase (CDP-ME synthase); iv, 4-diphosphocytidyl-2-*C*-methyl-D-erythritol kinase (CDP-ME kinase).

 Mn^{2+} , but also accepted Co^{2+} or Mg^{2+} . The enzyme is designated 1-deoxy-D-xylulose 5-phosphate reductoisomerase, and catalyses an intramolecular rearrangement and reduction. The rearrangement is pinacol-like, and the anticipated intermediate aldehyde 13 (2-C-methylerythrose 4-phosphate) is not released from the enzyme, but is simultaneously reduced by the cofactor NADPH (Scheme 8). The enzyme's amino acid sequence contains a recognizable NADPH-binding domain. There is ample precedent for this rearrangement-reduction in the transformation of 2-acetolactate into 2,3-dihydroxyisovalerate by ketol acid reductoisomerase (Scheme 9) during the biosynthesis of valine, isoleucine, and leucine. The gene encoding a plant homologue of this enzyme has been isolated from peppermint (Mentha X piperita) and expressed in E. coli.⁴⁰ Unlike the microbial reductoisomerase, the enzyme encoded by the plant gene is a preprotein bearing an N-terminal plastidial transit peptide that directs the enzyme to plastids, where the mevalonate-independent pathway operates in plants. Similarly, a cDNA from Arabidopsis thaliana encoding the enzyme has been cloned and expressed.⁴¹ A dxr gene from the cyanobacterium Synechococcus leopoliensis encoding for the reductoisomerase has been identified and expressed in E. coli.42 In

contrast to the significant increase in DMAPP levels observed when *E. coli* cells overexpressed the DXP synthase gene dxs, the overexpression of dxr led to no change in DMAPP levels. Overexpression of both genes did not give additional DMAPP synthesis over that with dxs, so it was concluded that DXP synthase but not DXP reductoisomerase catalyses a rate-limiting step in terpenoid biosynthesis.

Identification of some of the catalytic amino acid residues in DXP reductoisomerase from *E. coli* has been achieved *via* overexpression of the *dxr* gene as a histidine-tagged protein.⁴³ DNA sequencing of *dxr* genes from *dxr*-deficient mutants revealed important base substitution mutations. To characterize the defects, mutant enzymes G14D, E231K, H153Q, H209Q, and H257Q were constructed by site-directed mutagenesis and overexpressed. The results indicated that Glu-231 of the *E. coli* reductoisomerase plays an important role in catalysis, and that His-153, His-209, and His-257, in part, are involved with DXP binding. The stereochemistry of the reduction step has been investigated using a recombinant enzyme from *Synechocystis* sp. PCC6803, which was shown to have 42% identity to the *E. coli* protein.⁴⁴ Using [3-²H]DXP as substrate, label was found at the C-1 *pro-S* position of MEP (Scheme 10). The *pro-R*

hydrogen at C-1 of MEP therefore derives from NADPH, and hydride delivery is to the *re* face of the proposed aldehyde intermediate. The reductoisomerase has also been shown to be a class B dehydrogenase. Using (4R)- and (4S)- $[4-^2H_1]$ NADPH, it was established that only the (4S)-labelled coenzyme afforded labelled MEP. The same stereochemical behaviour was found with the *E. coli* reductoisomerase in independent studies.⁴⁵

The phosphonic acid derivative fosmidomycin 18, an antibiotic isolated in 1980 from Streptomyces lavendulae, has proved to be a specific inhibitor of 1-deoxy-D-xylulose 5phosphate reductoisomerase.⁴⁶ This compound was chosen for study via a database search for antibiotics which were active towards E. coli and Bacillus subtilis, both of which synthesize terpenoids using the deoxyxylulose phosphate pathway, but was inactive towards Staphylococcus aureus which possesses the mevalonate pathway. Fosmidomycin was found to strongly inhibit purified recombinant E. coli reductoisomerase through a mixed competitive and noncompetitive mechanism, and its inhibitory effect on E. coli could be reversed by the addition of 2-C-methylerythritol. Fosmidomycin has close structural similarity to the hypothetical enzyme-bound intermediate 2-C-methylerythrose 4-phosphate 13, which presumably accounts for its inhibitory properties. In independent studies,⁴⁷ fosmidomycin was also identified as an inhibitor of the DXP pathway via its known herbicidal as well as antibacterial activity. It was demonstrated to inhibit cell multiplication and pigment accumulation in the red alga Cvanidium caldarium, formation of carotenoids in green ripening tomato fruits, formation of carotenoids and chlorophylls in etiolated barley leaves, accumulation of prenyl pigments in duckweed (Lemna gibba), and emission of isoprene from leaves of Populus nigra, Platanus X acerifolia, and Chelidonium majus. Since the antibiotic had no inhibitory activity on recombinant E. coli DXP synthase, the reductoisomerase was proposed to be its target.

The biosynthesis of 2-C-methylerythritol in leaves of *Liriodendron tulipifera* has been investigated using a variety of labelled 1-deoxy-D-xylulose substrates.⁴⁸ In particular, the transformation of [2,3,4,5-13C4]deoxyxylulose into [1,2,3,4-¹³C₄]-2-C-methylerythritol proved the occurrence of an intramolecular rearrangement exactly as seen in the deoxyxylulose pathway. Additionally, 1-deoxy-D-xylulose proved to be a precursor of β -carotene in *Liriodendron*. It is proposed that deoxyxylulose is converted into the 5-phosphate by a plant kinase, and then into 2-C-methylerythritol 4-phosphate by the deoxyxylulose phosphate pathway, leading to terpenoids. In certain plants, such as Liriodendron, dephosphorylation results in formation of 2-C-methylerythritol. When [3-²H]deoxyxylulose was used as substrate, the 2-C-methylerythritol which was formed was labelled specifically in the HSi position of C-1.49 This is entirely consistent with the stereochemistry of reduction seen above with the E. coli reductoisomerase, and also compares with the mechanistically related steps which occur during the biosynthesis of valine and isoleucine.

Most feeding experiments reported have employed deoxyxylulose or methylerythritol as substrates, since these are more readily available than the phosphate derivatives regarded as intermediates in the DXP pathway. However, the phosphates have also been demonstrated as precursors of terpenoids in feeding experiments in higher plant cells.⁵⁰ Labelled DXP was produced via the cloned synthase enzyme, whilst labelled MEP was obtained synthetically. Both substrates were efficiently converted into β -carotene and geranylgeraniol in chromoplasts of Capsicum annuum, though this was absolutely dependent on the presence of ATP. Similar results were obtained with chromoplasts of Narcissus pseudonarcissus, and chloroplasts from several other plant species. In the Capsicum chromoplast system, fosmidomycin completely inhibited the incorporation of DXP into β -carotene, though incorporations of MEP and IPP were not affected. The feeding of labelled deoxyxylulose to Ipomoea purpurea plants leads to formation of a metabolite, identified as 2-C-methyl-D-erythrono-1,4-lactone 20.⁵¹ Similar transformation occurs in a variety of plant systems. This compound had previously been isolated as a stress metabolite in certain plants. It is postulated that DXP is first converted into MEP, which is then oxidized to a carboxylic acid 19 (Scheme 11). Dephos-

phorylation then yields the free acid which can spontaneously form the lactone **20**.

After 2-*C*-methylerythritol 4-phosphate, the deoxyxylulose phosphate pathway proceeds *via* 4-diphosphocytidyl-2-*C*methyl-D-erythritol (CDP-ME) **15** (Scheme 8). This compound was identified by preparing mutants of *E. coli* blocked between MEP and IPP.⁵² However, since such mutations would be lethal, an *E. coli* transformant possessing mevalonate pathway enzymes beyond mevalonate was constructed as the parent strain. Mutants able to grow only upon addition of mevalonate were identified. These mutants facilitated cloning of several genes that complemented the defects, and led to preparation of one gene product that converted 2-*C*-methylerythritol 4phosphate into CDP-ME in the presence of CTP. A second gene product converted CDP-ME into the next intermediate in the pathway, CDP-ME2P **16** (see below). In independent studies, a gene from *Arabidopsis thaliana* bearing similarity to the *ipsD* gene of *E. coli* was cloned, and a fragment encoding the protein minus a potential plastid-targeting sequence was expressed in a recombinant *E. coli* strain.⁵³ This protein was shown to catalyse formation of CDP-ME from MEP. From deduced amino acid sequences, the catalytic domain of the plant enzyme is about 30% identical with the *E. coli* enzyme.

Phosphorylation of the 2-hydroxy group of CDP-ME gives 4diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) 16 (Scheme 8). This was obtained by incubation of the gene product encoded by ychB from E. coli with CDP-ME in the presence of ATP.⁵⁴ Independently, it was surmised from a study of the distribution in various organisms of the dxs, dxr, and ygbP genes that the ychB gene in the *E. coli* genome may also encode an enzyme involved in the DXP pathway.55 The recombinant protein obtained by expression of this gene was purified and shown to phosphorylate CDP-ME in an ATPdependent manner. Further, a ¹⁴C-labelled sample of the product was converted efficiently into carotenoids by isolated chromoplasts of Capsicum annuum. The putative catalytic domain of a predicted tomato protein with similarity to this *E. coli* kinase has been expressed in *E. coli*.⁵⁶ The purified protein similarly catalysed phosphorylation of CDP-ME to the 2-phosphate. Divalent metal ions, preferably Mg²⁺, were required for activity. Neither the tomato enzyme nor the E. coli orthologue catalysed the phosphorylation of isopentenyl monophosphate. This contrasts with the reported activities of a partially purified *vchB* gene product and an orthologue from Mentha X piperita, both of which phosphorylated isopentenyl monophosphate to IPP, and which had thus been concluded to be the final step in IPP biosynthesis.⁵⁷ By comparison with the phosphorylation of CDP-ME, this phosphorylation of isopentenvl monophosphate to IPP was extremely slow, and regarded as metabolically irrelevant.50

The last currently delineated step in the DXP pathway is the transformation of 4-diphosphocytidyl-2-*C*-methyl-D-erythritol 2-phosphate **16** into 2-*C*-methyl-D-erythritol 2,4-cyclodiphosphate **17** (Scheme 8). This is catalysed by the enzyme encoded by the *ygbB* gene, found to be closely linked to *ygbP* which encodes CDP-ME synthase.⁵⁸ The *E. coli* gene was expressed in a recombinant *E. coli* strain to give a soluble enzyme which converted **16** into the cyclodiphosphate **17** and CMP. The enzyme required Mn²⁺ or Mg²⁺ but no other cofactors. ¹⁴C-Labelled cyclodiphosphate **17** was efficiently incorporated into carotenoids by isolated chromoplasts from *Capsicum annuum*. The enzyme was also found to form a cyclophosphate **21** from CDP-ME (Scheme 12), but the product was not incorporated

into carotenoids, and is assumed not to be a metabolic intermediate. The cyclic diphosphate **17** had been isolated earlier from cultures of bacteria exposed to oxidative stress, but had

been interpreted as a dead-end product derived from the DXP pathway. Its formation from **16** is formulated as nucleophilic attack of the 2-phosphate to form the phosphoanhydride, displacing CMP as leaving group (Scheme 8).

The remaining steps in the pathway to IPP have yet to be confirmed, but are suggested to be an intramolecular elimination followed by reductions and dehydrations (Scheme 8).59 In the mevalonate pathway, IPP is converted into DMAPP by the action of IPP isomerase, but in the deoxyxylulose phosphate pathway there is growing evidence that this isomerism may not occur. Thus, secretory cells specialized for monoterpene biosynthesis from peppermint (Mentha X piperita) incorporated labelled pyruvic acid into geranyl diphosphate. However, in the presence of 2-(dimethylamino)ethyl diphosphate 22, a transition state analogue inhibitor of IPP isomerase, there was a decrease in GPP production and an accumulation of IPP, with no detectable DMAPP.60 This was indicative of IPP, not DMAPP, being the terminal product from the pathway. Feeding experiments in E. coli using deoxyxylulose as a precursor have shown that label from [3-2H]deoxyxylulose is found in ubiquinone 23 in the (E)-methyl group in the terminal unit, and in all other positions derived from the terminal methylene group of IPP.61 However, label from [4-2H]deoxyxylulose is retained exclusively in the double bond corresponding to the DMAPP starter unit, but not in any of the remaining double bonds generated from IPP in the elongation process. This is in striking contrast to the situation observed for the mevalonate pathway in eukaryotic organisms where the same H-atom of IPP (HRe) is lost both in the isomerization to DMAPP and in the elimination step of the elongation process. An IPP isomerase has been demonstrated in E. coli, and it shares the same stereochemical features with eukaryotic enzymes (see above).24 Thus, one concludes that either the stereochemistry of elongation is different from that of the isomerization, or, alternatively, IPP and DMAPP may be formed independently from a common intermediate.

Genetic evidence for the branching of pathways to IPP and DMAPP in E. coli has been presented.⁶² This required creation of an E. coli strain impaired in the synthesis of MEP via disruption of the dxr gene and therefore unable to synthesize IPP and DMAPP. However, in addition it had the engineered ability to synthesize IPP from exogenously supplied mevalonate via insertion of genes encoding for mevalonate pathway enzymes converting mevalonate into IPP. Finally, a derivative strain harbouring a disruption to idi, the gene encoding IPP isomerase, was constructed. The absence of IPP isomerase was known to have no apparent effects on growth and survival, confirming idi was a non-essential gene. Since the engineered E. coli strain with the double disruption at dxr and idi genes grew in the presence of methylerythritol, it was concluded that, if there is only one route for the biosynthesis of either IPP or DMAPP in E. coli, isomerization is not accomplished by IPP isomerase encoded by idi. The presence of a second IPP isomerase gene was excluded, and the results are best explained in terms of a branching point after MEP resulting in independent synthesis

of IPP and DMAPP. Further evidence is provided by labelling studies in an E. coli strain defective in DXP synthase and which synthesizes its isoprenoids exclusively from exogenous methylerythritol.⁶³ Hydrogen atoms from [1,1-²H₂]methylerythritol were incorporated without loss into the prenyl chain of ubiquinone-8 23 on carbons derived from C-4 of IPP and on the (E)-methyl group of DMAPP. Label from C-5 of [3,5,5,5-²H₄]methylerythritol was incorporated into ubiquinone-8 and menaquinone-8 24, residing on the methyl groups derived from the C-5 methyl of IPP and the (Z)-methyl group of DMAPP (see 25). Thus, there was no change in oxidation state of these carbon atoms during the reaction sequence between MEP and IPP. Further, no deuterium scrambling was observed between C-4 and C-5 of IPP/DMAPP, suggesting complete stereoselectivity of IPP isomerase, if involved. However, the C-3 deuterium atom from this substrate was preserved only in the DMAPP starter unit, and was completely missing from the IPP-derived extender units. Since the IPP isomerase gene in E. coli is non-essential,⁶⁴ it was concluded that different routes to IPP and DMAPP are operative. A study of lutein and phytol (from chlorophylls) biosynthesis in cell cultures of Catharanthus roseus has also demonstrated inconsistencies.⁶⁵ Deuterium label from position 3 of deoxyxylulose was incorporated into both IPP- and DMAPP-derived isoprene units, retaining about 75% of the label compared to an internal standard ¹³C label, and this is located preferentially in the (E)-hydrogen atom of IPP. This preferential labelling rules out DMAPP as the compulsory precursor of IPP. The 4-²H label from deoxyxylulose was completely washed out, most probably as a consequence of the isomerization and elongation process. This is in marked contrast to the situation in E. coli, where this label is retained in the DMAPP starter unit. This could reflect differences in stereospecificity of IPP isomerase in the two systems, but could also indicate independent formation of IPP and DMAPP.

When $[2^{-13}C, 4^{-2}H_1]$ deoxyxylulose was fed to twiglets of *Eucalyptus globulus*, the monoterpene cineole **26** isolated gave further data that IPP and DMAPP are formed in independent rather than sequential steps.⁶⁶ Thus the formation of five isotopomers could be detected, and their structures and relative abundance showed that ¹³C label was incorporated to the same extent into both C₅ units. However, whilst the ²H label was retained to an extent of 57% in the starter DMAPP unit, it was completely or almost completely lost in the unit derived from IPP. Since it was already known that the corresponding hydrogen in GPP is fully retained during cineole biosynthesis, it follows that the two olefinic hydrogens of GPP must have different metabolic origins.

Ubiquinone-8 23 biosynthesis in *E. coli* from $[1,1,1,^2H_3]$ deoxyxylulose shows intact incorporation of the methyl group of deoxyxylulose, labelling methyl groups originating from the

methyl group of IPP and the (Z)-methyl of DMAPP.⁶⁷ Triterpenoids 27 and 28 of the hopane series in the bacterium Zymomonas mobilis are biosynthesized via the DXP pathway, and, after feeding [1-²H]glucose, deuterium labelling was found on all carbons derived from C-2 and C-4 of IPP.68 Due to peculiar metabolic pathways in this bacterium, [1-²H]glucose is converted into NADP²H, so these incorporations represent the result of reductive steps during the biosynthesis. Deuterium at C-4 of the IPP units arises because of the NADPH-dependent reduction in the DXP to MEP conversion catalysed by the reductoisomerase. However, the presence of deuterium at C-2 indicates an additional reduction step, consistent with the proposed sequence in Scheme 8. Phytol 29 biosynthesis in the cyanobacterium Synechocystis sp. UTEX 2470 from a number of deuterium-labelled glucose substrates has been investigated.⁶⁹ Similarly, labelling at C-4 in IPP units from $[6,6-{}^{2}H_{2}]$ glucose as precursor was explained by the participation of labelled NADPH. In addition, since in no experiment was deuterium retained at C-2 in IPP units, the involvement of an intermediate such as the 2-ketone (Scheme 8) was postulated. During the biosynthesis of the monoterpene linalyl acetate **30** in *Mentha citrata*, labelling studies using [3-²H₃]alanine (as a source of pyruvate) and [6,6-²H₂]glucose have established that the conversion effectively retains five hydrogens of DXP, three from the C-1 methyl group and two from C-5.70

To identify genes that might encode enzymes that catalyse later steps in the DXP pathway, the occurrence of known DXP pathway genes in bacteria, yeast, and Arabidopsis was ascertained, and genes that exhibited the same pattern of occurrence were identified.⁷¹ In addition, bacterial genomic libraries and plant cDNA libraries were screened for genes that increased the accumulation of lycopene in E. coli engineered to produce this compound. Common to both approaches was the identification of homologues of the E. coli lytB gene as prospective DXP pathway genes. It has been proposed that the lytB gene encodes an enzyme for a step at or subsequent to the point at which the pathway branches to form IPP or DMAPP. A mutant of the cyanobacterium Synechocystis strain PCC 6803 with an insertion in the promoter region of lytB grew slowly and produced easily bleached colonies, whilst insertions in the coding region were lethal. Supplementation with the alcohol analogues of IPP and DMAPP alleviated the growth impairment. The Synechocystis lytB gene and a lytB cDNA from the plant Adonis aestivalis were each found to enhance accumulation of

carotenoids in engineered *E. coli*. Combined with a *dxs* cDNA, the individual effects of *dxs* and *lytB* were multiplied. In contrast, a combination of lytB and *ipi*, a cDNA encoding IPP isomerase, was no more effective in enhancing carotenoid production than *ipi* alone. Thus, the ratio of IPP and DMAPP produced *via* the DXP pathway is influenced by the enzyme LytB, though its nature has yet to be established.

Whether a terpenoid is synthesized in nature via the deoxyxylulose phosphate pathway, or via the alternative mevalonate pathway, is readily established by the labelling patterns found in feeding experiments using glucose precursors, e.g. [1-13C]glucose (31, Scheme 13). Catabolism of glucose through glycolysis and subsequent incorporation of the resulting metabolites gives characteristic labelling patterns according to the pathway followed. Through this, or related methodologies, the widespread utilization of the deoxyxylulose phosphate pathway has been established. The hemiterpene isoprene 9 is formed in the bacterium Bacillus subtilis by the DXP pathway, as it is in plants.⁷² In the monoterpene field, labelled deoxyxylulose is incorporated into menthone 32, menthol 33, menthofuran 34, and eucalyptol (cineole) 26 in Mentha X piperita, into pulegone 35 in Mentha pulegium, into geraniol 36 in Pelargonium graveolens, and into thymol 37 in Thymus vulgaris.73 However, incorporations were rather lower than the incorporations into chlorophylls and carotenoids. The iridoid secologanin 38 in Catharanthus roseus is DXP-derived,⁷⁴ as is loganin 39 in Rauwolfia serpentina.75 In the latter studies, a retrobiosynthetic approach was also employed, in which the labelling patterns observed in protein-derived amino acids were used to reconstruct the labelling patterns of phosphoenolpyruvate, pyruvate and acetyl-CoA, and these patterns were subsequently used to predict labelling in DMAPP and IPP derived via the alternative pathways. The observed labelling patterns in loganin were in excellent agreement with the DXP pathway prediction. The previously reported low incorporations of mevalonate into loganin can be attributed to metabolite exchange (crosstalk) between the two terpenoid pathways, the extent of which can be established from a quantitative analysis of general carbon metabolism.

A number of sesquiterpenoids have been shown to be of mevalonate rather than DXP origin, which has been thought

to relate to biosynthetic location in the cytoplasm. However, recent studies on the biosynthesis of sesquiterpenes bisabolol oxide A 40 and chamazulene 42 in flowers of chamomile (Matricaria recutita) has established they have mixed origins.⁷⁶ Two of the isoprene units were predominantly formed from the DXP pathway, but the third, comprising the last extender unit, was of mixed origin, and mevalonate also contributed to its formation. It was hypothesized that a GPP C₁₀ unit was created in the plastid from DXP, and was then transferred to another subcellular compartment that has access to IPP formed via both pathways. In further studies,77 these findings were reinforced by feedings of labelled deoxyxylulose. This precursor was efficiently incorporated into all three isoprene units of bisabolol oxide A, chamazulene, and also bisabolol oxide B 41, but there was a significantly lower incorporation into the biogenetically terminal unit. It was estimated that the DXP pathway contributed approximately 90% of label to the first two

units, but only 50% to the third. Abscisic acid **43** is formed by cyclization of FPP in fungi, but by degradation of a C₄₀ carotenoid in plants (see Section 7). Feeding experiments with [1-¹³C]glucose have shown that in the tulip tree (*Liriodendron tulipifera*) abscisic acid is derived from DXP, whilst in the fungi *Botrytis cinerea* and *Cercospora pini-densiflorae* it has its origins in mevalonate.⁷⁸ Furthermore, abscisic acid from *L. tulipifera* had labelling analogous to that in β-carotene **44** from the same feeding, consistent with a carotenoid origin. Lipiferolide **45** from *L. tulipifera* was also DXP-derived.

In marked contrast, the drimane esters **46–48** found in the marine molluscs *Dendrodoris limbata* and *D. grandiflora* have been shown to be derived from glucose precursors *via* the mevalonate pathway.⁷⁹ Similarly, the gymnomitranes β -barbatene **49**, gymnomitr-3(15)-en-4 α -ol **50**, and gymnomitran-4-one **51** were all products of the mevalonate pathway in the liverworts *Reboulia hemispaerica* and *Bazzania trilobata*.⁸⁰

In fungus-infected barley (Hordeum vulgare) plants the cyclohexenone derivative blumenin 52 has been shown to originate from DXP, and is probably derived from a sesquiterpenoid precursor.⁸¹ A group of so-called homoterpenes (C_{11}) formed in certain plants as a response to insect damage are known to be degraded sesquiterpenes (see Section 7). In a study of the relative roles of $[{}^{2}H_{2}]$ deoxyxylulose and $[{}^{2}H_{5}]$ mevalonate in the formation of volatile terpenoids including homoterpenes, the DXP pathway was found to be the major pathway.⁸² Thus, in suitably treated lima beans (Phaseolus lunatus), deoxyxylulose labelled the monoterpenes ocimene 53 and linalool 54 to a particularly high extent, whereas both deoxyxylulose and mevalonate could serve as precursors of the homoterpene 4,8dimethylnona-1,3,7-triene 55. A higher degree of labelling was achieved in 55 by using a statin inhibitor of HMGR in the mevalonate pathway, thus indicating that biosynthesis could follow both routes. The diterpene-derived analogue of 55, 4,8,12-trimethyltrideca-1,3,7,11-tetraene 56, was also labelled by deoxyxylulose. Similar data were obtained with other metabolites in some other plant species, and it was apparent that the DXP pathway is a major pathway to volatile plant terpenoids. Although deoxyxylulose is preferentially channeled into monoterpene and diterpene biosynthesis in the plastids, there is also a large contribution to sesquiterpene biosynthesis in the cytosol, due to the plant's ability to manipulate resources between cytosol and chloroplast.

In the diterpenoid field, steviol **57** is synthesized in *Stevia rebaudiana via* the DXP pathway,⁸³ as are bicyclic and tetracyclic diterpenes such as scoparic acid **58** and scopadulcic acid **59** in leaves of *Scoparia dulcis*.⁸⁴ In the latter studies, labelling

patterns showed phytol 29 was also produced via the DXP pathway, whilst the sterol *β*-sitosterol **60** originated from the mevalonate pathway. Phytol biosynthesis has also been studied in the cyanobacterium Synechocystis sp. UTEX 2470, where the DXP pathway was also shown to be operative.85 However, in cultured cells of the liverwort Heteroscyphus planus, feeding experiments with [2-13C]glycerol and [6,6-2H2]glucose along with earlier results demonstrated simultaneous operation of both mevalonate and DXP pathways.86 There was also equal incorporation of either methyl or carboxy carbons of acetate into all carbons of the phytyl side-chain of chlorophyll (via double-labelled acetate) with complete loss of methyl hydrogens. This indicated that CO₂ evolved from the carboxy carbon through the tricarboxylic acid cycle may be reutilized via the reductive pentose phosphate cycle followed by the glycolytic pathway. Biosynthesis of the neoverrucosane diterpene, 8aacetoxy-13a-hydroxy-5-oxo-13-epi-neoverrucosane 61, in the liverwort Fossombronia alaskana is predominantly (>95%) via the DXP pathway.⁸⁷ This contrasts markedly with studies in the eubacterium Chloroflexus aurantiacus where the structurally related verrucosane verrucosan-2\beta-ol 62 was shown to be of mevalonate origin.⁸⁸ The diterpenoid moiety of brasilicardin A 63 from the pathogenic actinomycete Nocardia brasiliensis is also formed via the DXP pathway.⁸⁹ In the two diatoms Phaeodactylum tricornutum and Nitzschia ovalis, isoprenoid biosynthesis has been investigated using a variety of precursors.90 Acetate was the preferred carbon source for cytosolic sterol biosynthesis using the mevalonate pathway, but phytol biosynthesis in the chloroplast involved the DXP pathway and CO₂

190 Nat. Prod. Rep., 2002, 19, 181–222

proved the best carbon source. Thus, the diatoms demonstrated the same type of compartmentation for isoprenoid biosynthesis as seen in plants.

Incorporation of [1-¹³C]glucose has been used to differentiate between involvement of the DXP and mevalonate pathways in terpenoid biosynthesis in a number of unicellular algae.⁹¹ In the green algae Chlorella fusca and Chlamydomonas reinhardtii, all isoprenoids examined (the sterols chondrillasterol 64, 22,23dihydrochondrillasterol 65, ergost-7-enol 66; phytol 29; carotenoids lutein 67 and β -carotene 44) were synthesized from DXP, as they were in another previously investigated green alga Scenedesmus obliquus. This organism also used DXP to synthesize ubiquinone 23. In the red alga Cyanidium caldarium and in the Chrysophyte Ochromonas danica there appeared a clear dichotomy, as seen in the higher plants. Thus, sterols porifasterol 68, 7-dehydroporifasterol 69 and ergosterol 70, were formed from mevalonate, but chloroplast isoprenoids (phytol, β-carotene) originated from DXP. The Euglenophyte Euglena gracilis synthesized both ergosterol and phytol via the mevalonate pathway. Both phytol and β-carotene originated from DXP in the cyanobacterium Synechocystis PCC 6714. The sterol ergosterol 70 is also a product of the DXP pathway in the yeast-like alga Prototheca wickerhamii.92 It was also established that the pro-Z methyl group of cycloartenol 71 is derived from C-5 of IPP and that protonation at C-25 of the $\Delta^{25(27)}$ -sterol intermediate takes place from the si-face of C-25 to form the isopropyl pro-R methyl group (Scheme 14).

Ubiquinone biosynthesis also varies according to organism. $[2,3^{-13}C_2]$ - and $[2,4^{-13}C_2]$ -Deoxyxylulose substrates were incorp-

label from [1-¹³C]glucose

orated into ubiquinone-8 23 in E. coli, giving a labelling pattern consistent with the rearrangement of DXP into MEP.93 On the other hand, studies in tobacco (Nicotiana tabacum) cells94 have shown that sterols (campesterol 72, 22,23-dihydrobrassicasterol 73, β-sitosterol 60 and stigmasterol 74) which are synthesized in the cytoplasm, and the prenyl chain of ubiquinone-10 75 (located in the mitochondria) were derived from the same mevalonate-derived pool of IPP. However, the prenyl chain of plastoquinone-9 76 was DXP-derived, in keeping with its chloroplastic location. The results fit the known compartmentation of these long chain polyprenols, and indicate the complete enzymic independence of the pathways. Menaquinone-9(H₄) 77 is produced by the DXP pathway in Actinoplanes sp. A40644, though a terpenoid derivative BE-40644 78 was shown to be derived mainly from mevalonate.95 It was also deduced that the DXP pathway operates at the early stages of fermentation, and that its contribution is replaced by the mevalonate pathway when secondary metabolite production begins.

Whilst detailed information about meroterpenoid biosynthesis is deliberately omitted from this report, the relative importance of the DXP and mevalonate pathways in supplying the terpenoid portion of meroterpenoids is of interest. The DXP pathway has been found to be operative in the biosynthesis of the flavonoid glabrol 79 in Glycycrrhiza glabra,96 the furocoumarins psoralen 80, xanthotoxin 81, bergapten 82 and isopimpinellin **83** in *Apium graveolens*,⁹⁷ the coumarin antibiotic novobiocin **84** in *Streptomyces niveus*⁹⁸ and *Strepto*myces spheroides,⁹⁹ and the bitter acid humulone 85 in Humulus lupeus.¹⁰⁰ Lucidin 3-primveroside 86, an anthraquinone formed by combination of an isoprene unit with o-succinylbenzoate, derives its isoprene unit from DXP in Rubia tinctorum.¹⁰¹ The monoterpenoid moiety of the indole alkaloid teleocidin B-4 87 from Streptomyces blastmyceticum is also DXP-derived.¹⁰² Isoprenoid units of shikonin **88** in *Lithospermum erythrorhizon*,¹⁰³ boviquinone-4 **89** in *Suillus bovinus*,¹⁰⁴ and paraherquamide A 90 in *Penicillium fellutanum*¹⁰⁵ have been shown to originate from mevalonate.

A phylogenetic study of the distribution of genes of the two pathways suggests the mevalonate pathway is characteristic of archaebacteria, that the DXP pathway is characteristic of eubacteria, and that eukaryotes have inherited their genes for IPP biosynthesis from prokaryotes.¹⁰⁶ The occurrence of genes specific to the DXP pathway is restricted to plastid-bearing eukaryotes, indicating that these genes were acquired from the cyanobacterial ancestor of plastids. Lateral gene transfer between eubacteria subsequent to the origin of plastids appears to have played a major role in the evolution of this pathway. Similar conclusions were obtained from an independent survey, suggesting lateral gene transfer explains many features of IPP biosynthesis in bacteria, archaea and eukaryotes.¹⁰⁷ Several reviews covering the deoxyxylulose phosphate pathway are available,^{108, 109} including a recent Report.¹¹⁰

5 Polyprenyl diphosphate synthases

Polyprenyl diphosphate synthases (prenyltransferases) are responsible for the alkylation steps involving DMAPP and one

native and recombinant enzyme. A cDNA encoding for farnesyl diphosphate synthase has been characterized in tomato (Lycopersicon esculentum) fruit.¹¹² Tomato FPP synthase genes appear to be encoded by a small multigenic family. Characterization of FPP synthase from an insect has been reported.¹¹³ The cDNA isolated from the moth Agrotis ipsilon encodes a polypeptide which shares regions of homology with FPP synthase from other organisms, but has special features, such as an extra N-terminal extension of about 70 amino acids. A full-length cDNA from the plant Gossypium arboreum encoding FPP synthase has been transferred into Artemisia annua using an Agrobacterium tumefaciens transformation system.¹¹⁴ The foreign gene was shown to be expressed in certain lines, and a consequence of this was a 2-3 times improvement in the synthesis of the sesquiterpene artemisinin (see Section 7). FPP synthase catalyses chain elongation of DMAPP via GPP through two addition steps, but product selectivity of avian enzyme has been altered to favour synthesis of GPP.¹¹⁵ Site-directed mutagenesis has been used to modify residues that form the binding pocket for the hydrocarbon residue of the allylic substrate. From a number of reasonable changes tried, two substitutions, namely A116W and N144'W,

or more IPP residues, reactions which provide the polyprenyl diphosphate precursors for the various terpenoid families. Available evidence points to the initial ionization of the chain starter unit to provide an allylic cation prior to addition of IPP extender units. Many polyprenyl diphosphate synthase enzymes are relatively non-specific and catalyse the condensation of DMAPP with IPP units, building up polyprenyl diphosphate chains of different lengths. Farnesyl diphosphate synthase catalyses the successive condensations of IPP with both DMAPP and geranyl diphosphate (GPP) **91** to give farnesyl diphosphate

۱۸

ö

76 plastoquinone-9

73 22.23-dihydrobrassicasterol (24S)I

75 ubiquinone-10

MeC

MeC

93 GGPP

Scheme 15 *Enzymes*: i, geranyl diphosphate synthase; ii, farnesyl diphosphate synthase; iii, geranylgeranyl diphosphate synthase.

strongly discriminated against binding of GPP when compared with the wild-type enzyme. Although all three enzymes converted GPP into FPP, when incubated with DMAPP, the two mutant enzymes produced substantially lower levels of FPP. Similarly, mutant FPP synthase proteins of *Bacillus stearophilus* have been constructed with single amino acid substitutions before the first aspartate-rich motif.¹¹⁶ The mutated enzyme in which serine at the fourth position before the motif was replaced by phenylalanine exclusively produced GPP from DMAPP, and had very little affinity towards GPP. There was less selectivity with the corresponding tyrosine mutant, whilst the tryptophan mutant proved inactive.

Geranylgeranyl diphosphate synthase has been isolated from cell cultures of *Taxus baccata* and purifed.¹¹⁷ This enzyme was a homodimer. The most effective substrate was FPP, and although DMAPP was accepted, it was a much poorer substrate. GGPP synthase activity is rapidly induced when T. baccata cells are treated with methyl jasmonate, leading to a sharp increase in taxane diterpenoid production.¹¹⁸ A cDNA encoding GGPP synthase has been cloned from a methyl jasmonate-induced *Taxus canadensis* cell library.¹¹⁹ Recombinant enzyme was expressed in yeast. The deduced amino acid sequence of this gymnosperm enzyme resembled those of GGPP synthases from angiosperms, except for a 90-100 residue sequence at the Nterminus, which corresponds to a plastidial transit peptide. The enzyme was most effective with GPP as substrate, but also accepted DMAPP (33% activity) and GPP (66% activity). The full-length preprotein and a truncated version in which the transit peptide had been removed were successfully transformed to complement a GGPP-defective yeast mutant. However, overexpression in wild-type yeast proved toxic, probably due to depletion of endogenous FPP. GGPP synthase genes from sunflower (*Helianthus annuus*)¹²⁰ and humans¹²¹ have also been cloned and characterized. Overexpression of an archeal GGPP synthase from Sulfolobus acidocaldarius has been achieved by creating fusion proteins that retain thermostability better than the native enzyme, and have higher activity.¹²² The fusion proteins existed in dimer, tetramer, octamer or dodecamer forms, and their product specificities varied somewhat according to the oligomerization. Similar techniques were used to obtain GGPP synthase from the extremely thermophilic bacterium Thermus thermophilus.123 A dimeric fusion protein retained thermostability and had higher specific activity than the native enzyme. The deduced amino acid sequence for this enzyme suggested it was not typical of bacterial GGPP synthases, but had similarities with archaeal and eukaryotic short chain prenyltransferases. In *Arabidopsis thaliana*, there exists a small gene family for GGPP synthases encoding five isozymes and a related protein. Each gene appears to be expressed in different tissues during plant development, GGPP being synthesized by the organelles themselves instead of being transported.¹²⁴

cDNAs encoding GGPP synthase have been isolated from two diterpene producing plants, Scoparia dulcis and Croton sublyratus.¹²⁵ Both cloned genes showed high amino acid sequence homology (60-70%) to other plant enzymes and contained highly conserved aspartate-rich motifs, and were expressed in E. coli to yield active enzymes. Two mutant S. dulcis enzymes were then constructed in which small amino acids at the fourth and fifth positions before the first aspartaterich motif were replaced with aromatic amino acids, or in which amino acids from the aspartate-rich motif were deleted. Both mutants behaved as FPP synthase, and almost exclusively produced FPP from DMAPP and IPP, demonstrating that amino acids in the region of the aspartate-rich motif play essential roles in product length determination. Using Sulfolobus acidocaldarius GGPPsynthase and Bacillus stearothermophilus FPP synthase, mutations at the 5th, 8th, and 11th positions before the first aspartate-rich motif were investigated to establish their effect on chain length.¹²⁶ The side-chains of these amino acids are situated on the same side of an α -helix, and it had already been demonstrated that a single mutated GGPP synthase enzyme F77S produced mainly a C25 product (see ref. 1). Double mutated GGPP synthase (L74G and F77G) mainly produced a C35 product accompanied by significant amounts of C₃₀ and C₄₀. A triple mutated enzyme (I71G, L74G, and F77G) produced C40 with some C35 and C45. Similar effects were observed in the FPP synthase system. It was deduced that there exists a passage in which the growing polyprenyl chain resides as it elongates, and that bulky amino acids in the original passage block further elongation and control chain length.

Hexaprenyl diphosphate synthase catalyses the condensation of FPP with three molecules of IPP to afford hexaprenyl diphosphate, the precursor of the side-chain of menaquinone-6. In Micrococcus luteus, this enzyme consist of two dissociable components, designated A and B, with no prenyltransferase activity until they are combined. A similar situation exists in Bacillus subtilis for heptaprenyl diphosphate synthase, which provides the precursor of the side-chain of menaquinone-7, and these two-component systems are thus quite distinct from the other homodimeric prenyltransferases catalysing the synthesis of shorter or longer chain prenvl diphosphates. Genes encoding both components A and B of hexaprenyl diphosphate synthase from Micrococcus luteus have been cloned and characterized,¹²⁷ and also those for components I and II of heptaprenyl diphosphate synthase from Bacillus subtilis.¹²⁸ For the latter enzyme, the individual components were each overexpressed in E. coli, and studies indicated that the two essential subunits in the presence of FPP and Mg²⁺ form a stable ternary complex which seems to represent the catalytically active state of the synthase. No such complex is formed in the presence of IPP and Mg^{2+} . It was also demonstrated that component I possessed specific affinity for FPP, this affinity significantly increasing in the presence of component II. It is believed that component I first binds FPP, then associates with component II in the presence of Mg^{2+} to form the ternary complex which then catalyses the four consecutive chain extensions. Then the complex dissociates with concomitant release of the product. Alignment of amino acid sequences for component I and the corresponding subunits of Bacillus stearothermophilus heptaprenyl diphosphate synthase and Micrococcus luteus hexaprenyl diphosphate synthase showed three regions of high similarity.¹²⁹ Site-directed mutagenesis experiments suggested some of the conserved residues in region B of component I are involved in

the binding of allylic substrate as well as determining the chain length of reaction product. In Bacillus stearothermophilus heptaprenyl diphosphate synthase, an aspartate-rich motif is conserved in component II, and it appears that amino acids around this region may regulate chain length as found in other systems.¹³⁰ To test this theory, a mutated enzyme containing the substitution I76G in component II was shown to catalyse condensations beyond C₃₅, mainly C₄₀. Two mutated enzymes A79Y and S80F, which have a single replacement to the aromatic residue at the fourth or fifth position before the first aspartate-rich motif, mainly yielded a C₂₀ product. The results strongly suggest that there is a common mechanism to control product chain length in both short- and medium-chain prenyl diphosphate synthases. In the wild-type heptaprenyl diphosphate synthase the prenyl chain can grow on the surface of the small residues at positions 79 and 80, and elongation is precisely blocked at C35 by isoleucine 76. Several amino acid residues in the larger subunits of Micrococcus luteus hexaprenyl diphosphate synthase and Bacillus subtilis heptaprenyl diphosphate synthase were substituted by site-specific mutagenesis.¹³¹ In both enzymes, replacement of the Ala at the fifth position upstream of the first aspartate-rich motif with bulky amino acids resulted in shortening the chain length of the products. A double combination of mutant subunits of the heptaprenyl diphosphate synthase (I-D97A, II-A79F) yielded exclusively GGPP. Other combinations produced a C40 prenyl diphosphate, or chain lengths up to C₅₀. These results suggest that these medium-chain prenyl diphosphate synthases control chain length by a novel mechanism, in which both subunits cooperatively participate (Scheme 16).

Decaprenyl diphosphate is required for the side-chain of ubiquinone-10. The gene encoding for decaprenyl diphosphate synthase in *Gluconobacter suboxydans* has been cloned and expressed in *E. coli*.¹³² Enzyme activity was noted with GPP, FPP, and GGPP as allylic substrates. Single amino acid substitutions introduced upstream of aspartate-rich regions led mainly to mutant enzymes with reduced catalytic activity or a shortening of chain length in the product. However, a A70G mutant produced undecaprenyl diphosphate, whereas a A70Y mutant was completely inactive, indicating that Ala-70 is important for enzyme activity and the determination of product chain length.

In bacteria, undecaprenyl diphosphate synthase catalyses the (Z)-prenyl chain elongation onto all-(E)-FPP as a primer to yield undecaprenyl diphosphate 94 with (E,Z)- mixed stereochemistry (Scheme 17). Cloning of the gene for undecaprenyl diphosphate synthase from Micrococcus luteus and overproduction of the enzyme in E. coli has been reported.¹³³ The deduced primary structure of the (Z)-prenyl chain elongating enzyme was discovered to be totally different from those of (E)-prenyl chain elongating enzymes which are known to contain characteristic conserved regions, especially the aspartate-rich motifs. Undecaprenyl diphosphate synthase has been isolated from E. coli and studied with respect to kinetics and product distribution.¹³⁴ In the presence of excess FPP, intermediates in the range C25-C50 accumulated, whereas under conditions where both enzyme and FPP were in excess of IPP, C₂₀-C₃₀ products were favoured.

Studies with extracts from *Mycobacterium smegmatis* and *M. tuberculosis* have shown that *M. smegmatis* synthesizes mainly decaprenyl diphosphate and heptaprenyl diphosphate, whilst *M. tuberculosis* produces only decaprenyl diphosphate.¹³⁵ Data from both organisms suggest that GPP is the allylic substrate for two distinct prenyl diphosphate synthases, one located in the cell membrane that synthesizes (E,Z)-FPP, and the other present in the cytosol that synthesizes (E,E,E)-GGPP. In *M. smegmatis*, (E,Z)-FPP and (E,E,E)-GGPP are both utilized by membrane-associated prenyl diphosphate synthase activities to generate decaprenyl diphosphate and heptaprenyl diphosphate respectively. However, in *M. tuberculosis*, (E,E,E)-GGPP

(E,E)-FPP (E,E)-FPP $\downarrow 8 \times 1PP$ $\downarrow 0$ $\downarrow 0$

is not utilized for synthesis of heptaprenyl diphosphate. Gene cloning from *M. tuberculosis* has provided two unusual (*Z*)-isoprenyl diphosphate synthase activities.¹³⁶ One of these adds an isoprene unit to GPP producing (E,Z)-FPP, whilst the second enzyme adds seven more isoprene units to this substrate to generate decaprenyl diphosphate.

The enzyme dehydrodolichol diphosphate synthase is a (Z)-prenyltransferase that catalyses synthesis of the dehydrodolichol diphosphate which is used as a precursor of dolichyl phosphate. The cloning and characterization of a cDNA from *Arabidopsis thaliana* that encodes for this enzyme has been reported.¹³⁷ The identity of the cloned enzyme was confirmed by functional complementation of a yeast mutant defective in the enzyme.

The phytyl side-chain of chlorophylls, tocopherols, and phylloquinone is a reduced form of the geranylgeranyl group. A cDNA encoding a pre-geranylgeranyl reductase from *Arabidopsis thaliana* has been cloned and expressed in *E. coli*.¹³⁸ The deduced primary structure displays a characteristic dinucleotide binding domain. Geranylgeranyl reductase sequentially catalyses the reduction of geranylgeranyl-chlorophyll *a* into phytyl-chlorophyll *a*, as well as the reduction of free GGPP into phytyl diphosphate. Due to its multifunctionality and hydrophobicity, this enzyme may participate in chlorophyll, tocopherol and phylloquinone pathways. A tobacco (*Nicotiana tabacum*) cDNA sequence encoding geranylgeranyl reductase has also been reported.¹³⁹ Using transgenic plants expressing antisense RNA, it was concluded that the tobacco enzyme provides phytol for both tocopherol and chlorophyll synthesis.

A novel prenyltransferase gene encoding farnesylgeranyl diphosphate (FGPP) synthase has been isolated from the hyper-thermophilic archaeon *Aeropyrum pernix*.¹⁴⁰ This was expressed

in *E. coli* as a glutathione *S*-transferase fusion protein and produced FGPP from either FPP or GGPP substrates. FGPP is required for synthesis of C_{25} - C_{25} diether lipids **95** in this organism. A characteristic feature of archaea is the production of membrane lipids, the basic core of which is usually 2,3-di-*O*phytanyl-*sn*-glycerol **96**. Aspects of the biosynthesis of this material have been studied in *Haloarcula japonica*.¹⁴¹ [²H₉]Mevalonolactone was highly incorporated into the phytanyl chains of the core lipid, with total enrichment about 70%. Saturation of the geranylgeranyl group to the phytanyl group was shown to take place through *syn* addition of hydrogen (Scheme 18).

Biosynthesis of these lipids is believed to proceed via digeranylgeranylglyceryl phosphate derived from sn-glycerol 1-phosphate and GGPP. Similar feeding experiments with the thermophilic methanogens Methanococcus janaschii and Methanobacterium thermoautotrophicum produced some unexpected labelling patterns in the metabolites diphytanylglycerol 96, 36-membered lipid 97, and 72-membered lipid 98.¹⁴² It was concluded that an unusual double bond migration had occurred, and that this isomerization must have taken place after construction of the digeranylgeranylglyceryl group (Scheme 19). Further, the labelling patterns in the 36- and 72-membered lipids showed the retention of two deuterium atoms at the C-16 position, excluding higher oxidized states such as aldehyde or carboxylate as an intermediate for C-C bond formation. These results further support the involvement of an isomerized intermediate having a terminal methylene group, and a plausible mechanism is proposed via protonation and hydride transfer from NAD(P)H (Scheme 20).

96 2,3-di-O-phytanyl-sn-glycerol

A review on enzymatic aspects of isoprenoid chain elongation has been published.¹⁴³

6 Monoterpenoids

The conversion of geranyl diphosphate (GPP) **91** into simple cyclic monoterpenes involves initial isomerization to (+)-(3S)-linalyl diphosphate (LPP) **100** or to (-)-(3R)-LPP **102**. GPP is typically bound to the enzyme as a complex with a divalent metal ion. Ionization to the allylic linalyl cation **99** allows formation of LPP, and the opportunity for cyclization *via* the stereo-chemically favourable linalyl cation **101** (Scheme 21). A series

of cation-diphosphate pairs participates in the sequence, and both the isomerization and cyclization reactions are catalysed by a single enzyme.

Two clones with high sequence similarity to plant monoterpene cyclases were obtained from an Artemisia annua cDNA library and expressed in E. coli.144 The deduced peptide sequences were 88% identical, and had 42% identity with limonene synthase from Mentha spicata. The two recombinant enzymes transformed GPP into the acyclic monoterpene (3R)linalool 103 as the sole product in the presence of divalent cations. There was no activity with a range of other possible substrates. Although linalool cannot be detected in the essential oil of A. annua, an increase in transcripts for the two genes is detectable after wounding the leaves and stems. The Arabidopsis genome project has produced sequences with similarity to members of the terpene synthase family of genes. Expression of a putative terpene synthase gene allowed production of a protein which was indeed a monoterpene synthase enzyme.¹⁴⁵ This enzyme converted GPP into the acyclic monoterpenes β -myrcene 104 and (E)- β -ocimene 105, plus small amounts of cyclic monoterpenes (+)- and (-)-limonene 106, 2-carene 107, and tricyclene 108 (Scheme 22). Arabidopsis has not previously been reported as a producer of terpenoid secondary metabolites.

The enzyme limonene synthase from spearmint (Mentha spicata) catalyses the isomerization-cyclization of GPP to

196 Nat. Prod. Rep., 2002, 19, 181–222

(-)-(4S)-limonene **109**, and exists as a preprotein bearing a long plastidial targeting sequence. This causes difficulties for expressing the full-length protein in *E. coli*, and, to obtain a recombinant enzyme, the targeting sequence has been removed.¹⁴⁶ A soluble pseudomature form of the enzyme that is catalytically more efficient than the native enzyme was thus obtained. Truncation up to and including Arg-58, or substitution of Arg-59, yielded enzymes that are incapable of con-

verting GPP, but are able to cyclize exogenously supplied (3S)-linalyl PP **100**. This indicates a role for the tandem arginines in the diphosphate migration step accompanying formation of the intermediate LPP. Cyclic monoterpenes in *Mentha* species derived from limonene are characterized by additional oxygenation, which may be predominantly at C-3 (*e.g.* peppermint) or at C-6 (*e.g.* spearmint), according to species. Regiospecific cytochrome P-450-dependent hydroxylases catalyse these hydroxylations. The microsomal limonene-6-hydroxylase has been purified from the oil glands of spearmint and amino acid sequences used to design probes for a cDNA library.¹⁴⁷ A full-length cDNA was isolated and expressed in a baculovirus– *Spodoptera* system to provide a functional 6-hydroxylase enzyme converting (-)-(4S)-limonene **109** into (-)-*trans*carveol **110** (Scheme 23). Two closely related full-length cDNA

- OPP

species from a peppermint (*Mentha X piperita*) oil gland cDNA library were similarly expressed and shown to be limonene 3-hydroxylase, which converted (-)-(4*S*)-limonene into (-)-*trans*-isopiperitenol **111**. Both enzymes bear a typical amino-terminal membrane anchor, consistent with their microsomal location. Their primary sequences were 70% identical and 85% similar. In further studies,¹⁴⁸ a combination of domain swapping and reciprocal site-directed mutagenesis between the two enzymes demonstrated that exchange of a single residue (F363I) in the spearmint limonene-6-hydroxylase changed the enzyme so that it now possessed the full regiospecificity and catalytic efficiency of the peppermint limonene-3-hydroxylase.

Microsomal preparations from caraway (*Carum carvi*) catalyse the 6-hydroxylation of (+)-limonene **112** to (+)-*trans*-carveol **113**, the key intermediate in the biosynthesis of carvone **114** (Scheme 23).¹⁴⁹ The enzyme met all the established criteria for cytochrome P-450-dependent mixed function oxidases.

Common sage (*Salvia officinalis*) produces a broad range of cyclic monoterpenes with a variety of carbon skeletons (Scheme 24). cDNAs encoding three multiproduct monoterpene synthases have been isolated and functionally expressed in *E. coli*.¹⁵⁰ The major products obtained from GPP substrate were (+)-bornyl diphosphate **124** (75%), 1,8-cineole **115** (79%), and (+)-sabinene **123** (63%), respectively. However, significant

minor products characterized from the bornyl diphosphate synthase were (+)- α -pinene 118, (+)-camphene 125, and (\pm) -limonene 109/112. The 1,8-cineole synthase also produced (+)- and (-)- α -pinene 118/119, (+)- and (-)- β -pinene 121/122, myrcene 120, and (+)-sabinene 123; the (+)-sabinene synthase also produced γ -terpinene 116 and terpinolene 117 (Scheme 24). All three proteins appear to be translated as preproteins bearing an amino-terminal plastid-targeting sequence. The recombinant bornyl diphosphate synthase was a homodimer, whereas the other two enzymes were monomers. The distribution and stereochemistry of the products produced by the recombinant (+)-bornyl diphosphate synthase suggests this enzyme might represent both (+)-bornyl diphosphate synthase and (+)-pinene synthase which had previously been assumed to be two distinct enzymes though they had never been satisfactorily resolved.

(-)-Sabinene **127** is the major monoterpene produced by a European strain of the liverwort *Conocephalum conicum*. A partially purified sabinene synthase has been obtained from cultured plants and shown to possess the same general properties as monoterpene synthases from gymnosperms and angio-sperms.¹⁵¹ A North American strain of the liverwort produces (+)-bornyl acetate as its major monoterpene, and the formation of bornyl diphosphate was similarly demonstrated as a cycliza-

tion product from GPP. As in cell-free extracts from some plant species, the first-formed bornyl diphosphate is rapidly hydrolysed to borneol by phosphatases in the extract.

Analysis of the oleoresin from several tissues of loblolly pine (Pinus taeda) showed the derived turpentine to consist mainly of (+)- α -pinene 118 and (-)- β -pinene 122. Cell-free extracts from xylem tissue yielded three monoterpene synthases which together accounted for the monoterpene isomer and enantiomer content of the turpentine.¹⁵² The major products of these three enzymes, incubated with GPP, were (+)- α -pinene 118, (-)- α -pinene 119, and (-)- β -pinene 122, respectively. In most properties, these enzymes resembled other monoterpene synthases. Four full-length cDNA species have been isolated from a wounded Grand fir (Abies grandis) cDNA library and shown to encode four different monoterpene synthase enzymes.¹⁵³ These were expressed in E. coli and characterized as (-)-camphene synthase, (-)- β -phellandrene **128** synthase, terpinolene **126** synthase, and an enzyme that produces both (-)-limonene 109 and $(-)-\alpha$ -pinene 119. The origins of those metabolites not already covered in Scheme 24 can be formulated as in Scheme 25. These enzymes were all translated as preproteins bearing an amino-terminal plastid targeting sequence of 50-60 amino acid residues. cDNA truncation allowed deletion of the transit peptide and functional expression of pseudomature forms of

the enzymes with no change in product outcome. Sequence comparison revealed these enzymes resembled more closely sesquiterpene and diterpene synthases from conifers than they did mechanistically-related monoterpene synthases from angiosperms.

The tropolone β -thujaplicin **129** from *Cupressus lusitanica* has been shown to be monoterpenoid in origin.¹⁵⁴ ¹⁴C-Labelled geraniol was incorporated into β -thujaplicin in a *C. lusitanica* cell culture, and experiments with glucose and mevalonate showed the mevalonate-independent pathway to be operative. Based on the labelling patterns obtained from ¹³C-glucose feedings, a skeletal rearrangement of an initial limonane-type monoterpene is indicated, in which a methyl group is incorporated into the seven-membered ring (Scheme 26).

Iridoids are derived from geraniol 131, or the (Z)-isomer nerol 130, via early hydroxylation of the 8-methyl (Scheme 27). The dialdehyde iridodial 132 and/or its derived lactol 133 are regarded as pivotal intermediates in the pathway to other structures, e.g. loganin 136. Whether nepetalactones are derived

directly from iridodial by a Cannizzaro-type reaction or *via* the corresponding lactol has been investigated in cell-free extracts from catmint (*Nepeta racemosa*).¹⁵⁵ Support for the lactol intermediate was obtained by partial purification of an enzyme from young leaves that catalysed the NAD⁺-dependent oxidation of *cis,cis*-nepetalactol to *cis,cis*-nepetalactone (Scheme 28).

In some iridoids, C-10 is lost *via* hydroxylation then decarboxylation. The biosynthesis of such structures has been investigated further in recent studies.¹⁵⁶ Using *Thunbergia alata* plants,

6-deoxyretzioside 138 was shown to be incorporated into stilbericoside 140 rather more efficiently than was deoxyloganic acid 134, supporting its proposed intermediacy (see ref. 2) in the pathway to 140 (Scheme 29). In Deutzia schneideriana, iridodial glucoside 137 but not its 8-epimer was incorporated into scabroside 143 and deutzioside 142, whilst in D. scabra, decapetaloside 141 but not the isomeric 7-hydroxyiridodial glucoside was a precursor of these two compounds. These experiments help to confirm the pathway shown in Scheme 30, where loss of C-10 is believed to be analogous to that in the biosynthesis of stilbericoside. Deoxyloganic acid 134 was also found to be a precursor of unedoside 139 in Nuxia floribunda,157 and this compound seems a likely intermediate in the pathway to stilbericoside. Deoxyloganic acid, but not 8-epideoxyloganic acid, was also incorporated into the trans-fused iridoid glycosides (5aH)-6-epidihydrocornin 144 and 10-hydroxy-(5aH)-6-epidihydrocornin 145 in Penstemon secundiflorus.¹⁵⁸ This observation indicates that formation of the trans-fusion is therefore a late event, and does not occur during cyclization of the open chain monoterpene in iridoid formation. Label from deoxyloganic acid was also found in 10-hydroxyhastatoside 146 (which bears an 8β-methyl group), while 8-epideoxyloganic acid labelled penstemoside 147 (which has an 8a-methyl group), showing

biosynthetic pathways from both epimers of deoxyloganic acid in the same plant.

The conversion of loganin 136 into secologanin 148 by an oxidative cleavage of the cyclopentane ring is an important

biosynthetic step in that secologanin then becomes a precursor for many alkaloids, especially the terpenoid indole alkaloids. Whilst *Lonicera japonica* is known to contain loganin and a number of secologanin derivatives, cell suspension cultures do not accumulate iridoid or secoiridoid glucosides.¹⁵⁹ However, the cells did have the ability to convert loganin into secologanin. They also converted 7-deoxyloganin **135**, but not geraniol, into both loganin and secologanin. This suggested a lack of enzymes converting geraniol into iridoids in the cell cultures.

The enzyme secologanin synthase has been detected in microsomal preparations from cell suspension cultures of Lonicera japonica.¹⁶⁰ The enzymic reaction required NADPH and O₂ cofactors, was blocked by CO and several other cytochrome P-450 inhibitors, and so is concluded to belong to the cytochrome P-450 monooxygenases. The enzyme was specific for loganin, and other substrates tested, including loganic acid, 10-hydroxyloganin, 7-epiloganin, 7-dehydrologanin, 7-dehydrologanic acid, and 8-epiloganin, were not accepted. The mechanism proposed for the loganin-secologanin conversion (Scheme 31) parallels that in the formation of furocoumarins, and involves abstraction of a hydrogen radical from C-10 followed by cleavage of the C-C bond. The resultant C-7 carbon radical is converted into an aldehyde through hydroxylation or desaturation. Alternatively, successive removal of a hydrogen radical and an electron could yield a carbocation, and C-C cleavage could then be formulated as an ionic mechanism.

The biosynthesis of a range of secoiridoids has been investigated using plants of the Oleaceae.¹⁶¹ These fall into three types: oleoside 151, 10-hydroxyoleoside 152, and ligustalolide 153. Initially, labelled secologanin was shown to be a precursor of ligustaloside B 157 in Ligustrum japonicum, then C-8 stereoisomers of 8,10-epoxysecologanin 149 and 8,10-epoxysecoxyloganin 150 were administered separately to Olea europaea, Osmanthus fragrans, and Ligustrum japonicum. (8S)-8,10epoxysecologanin was a significantly better precursor than the (8R)-isomer for oleuropin 154 in Olea europaea, for 10-acetoxyoleuropin 155 in Osmanthus fragrans, and for ligustaloside A 156 and ligustaloside B 157 in L. japonicum. Both stereoisomers of 8,10-epoxysecoxyloganin were poorly incorporated. The results were interpreted in terms of (8S)-8,10-epoxysecologanin being a precursor of all three types of secoiridoid, and the mechanisms shown in Scheme 32 are proposed.

7 Sesquiterpenoids

Farnesyl diphosphate (FPP), the product of FPP synthase, is the precursor to a wide variety of sesquiterpenoids. Under certain circumstances, farnesol is also capable of initiating terpenoid biosynthesis, via phosphorylation to FPP. Two kinase activities converting farnesol into farnesyl monophosphate and subsequently FPP have been demonstrated in microsomal fractions from cultures of tobacco Nicotiana tabacum.¹⁶² CTP acted as the phosphate donor. Geranylgeraniol was similarly conreadily incorporated into sterols by tobacco cultures, though upon treatment with elicitor, label was directed away from sterol synthesis into formation of sesquiterpene phytoalexins such as

to germacrene A and its subsequent rearrangement via the eudesmyl cation to (+)-aristolochene 160 (Scheme 33). The Aspergillus terreus enzyme has been purified, and the gene coding for this enzyme identified, sequenced and expressed in E. coli.¹⁶³ The A. terreus protein had 70% identity in its deduced amino acid sequence with the enzyme previously isolated from the blue cheese mould Penicillium roqueforti. The crystal structure of recombinant aristolochene synthase from P. roqueforti has been reported.¹⁶⁴ The structure reveals active site features that participate in the cyclization. The enzyme active site is a template to enforce the correct substrate conformation throughout the cyclization cascade, and an aspartate-rich segment DDVIE is the coordination site for the Mg²⁺ ions necessary to trigger initial carbocation formation. In the formation of the germacrene A intermediate 158, there is no apparent general base to assist the deprotonation step, which may thus be assisted by the diphosphate leaving group. The phenolic hydroxy group of Tyr-92 appears to be the general acid/base involved in the cyclization of germacrene A to the eudesmyl cation, and proton removal after the subsequent rearrangements. Active site aromatic residues appear to stabilize carbocation intermediates through the sequence.

Scheme 33 *Enzymes*: i, aristolochene synthase, ii, 5-*epi*-aristolochene synthase.

Whilst the Penicillium roqueforti enzyme synthesizes aristolochene by way of (S)-germacrene A 158, the Nicotiana tabacum enzyme 5-epi-aristolochene synthase produces the diastereoisomeric product by way of (R)-germacrene A 159 (Scheme 33). This is a consequence of the stereospecificity of the cyclization cascade conferred by the enzyme active site. Although the germacrene A intermediate is not released during normal catalysis in either enzyme, its intermediacy in the Penicillium roqueforti system has been deduced by indirect methods (see ref. 1). The intermediate role of germacrene A in the Nicotiana tabacum system has now also been demonstrated.¹⁶⁵ Based on the threedimensional structure of tobacco 5-epi-aristolochene synthase, proton donation by Tyr-520 was considered responsible for activation of germacrene A to initiate formation of the eudesmyl cation (see ref. 1). Using site-directed mutagenesis, a Y520F point mutation was introduced into the enzyme, which effectively blocked this protonation step. This protein metabolized FPP much less efficiently than the original enzyme, but yielded a single product indistinguishable from authentic germacrene A, establishing both the intermediate role of this sesquiterpene and the function of Tyr-520.

Roots of chicory (*Cichorium intybus*) contain high levels of bitter sesquiterpene lactones comprising guaianolides, eudesmanolides and germacranolides, which are thought to arise from a common precursor, probably germacrene A. (+)-(R)-Germacrene A synthase has been isolated and purified from chicory roots.¹⁶⁶ The release of germacrene A from the enzyme contrasts with the aristolochene/*epi*-aristolochene systems above, where this intermediate is enzyme-bound and immediately cyclized further. It is suggested that further cyclizations in chicory to give the various sesquiterpene lactones may be initiated by oxidation reactions, especially epoxidations (Scheme 34).

The predominant sesquiterpene in the leaf oil of tomato (*Lycopersicon esculentum* cv Cherry) is germacrene C 165, with smaller amounts of germacrenes A 162, B 163 and D 164. Soluble enzyme preparations from leaves catalysed divalent

metal ion-dependent cyclization of FPP to these germacrenes.¹⁶⁷ cDNA isolation, characterization and bacterial expression in *E. coli* led to proteins that converted FPP into the four germacrenes (C: 64%; A 18%; B 11%; D 7%). None of the expressed proteins was active with GGPP, though one truncated protein converted GPP into the monoterpene limonene. The germacrene C synthase activity corresponded to a deduced polypeptide whose sequence compared most closely (50% identity) with that of δ -cadinene synthase from cotton. The biosynthetic relationships accounting for formation of the four germacrene C could be formed by two alternative mechanisms from a germacryl cation, invoking either 1,3- or 1,2-hydride shifts.

Germacrene D in the essential oil of *Solidago canadensis* is a mixture of the two enantiomers, and their formation has been studied to ascertain whether this involves one or two enzymes.¹⁶⁸ Enzyme extracts from young leaves converted FPP into both isomers, but purification allowed separation of two active fractions which were shown to be enantioselective synthases, producing either (+)-germacrene D **166** or (-)germacrene D **167**. The involvement of separate enzymes in the formation of enantiomers has been demonstrated previously in monoterpene biosynthesis.

Two cDNA species isolated from a cDNA library of grand fir (Abies grandis) have been expressed in E. coli and shown to encode proteins with the capability of synthesizing a remark-able number of sesquiterpene products.¹⁶⁹ The enzymes have been named δ -selinene synthase and γ -humulene synthase based on the principal products formed. Each enzyme produced three major products: these were δ -selinene **168** (25%), germacrene B 163 (17%) and guaia-6,9-diene 169 (10%) from δ -selinene synthase, and γ -humulene 170 (29%), sibirene 171 (15%) and longifolene 172 (12%) from γ -humulene synthase. However, the former enzyme yielded a total of 34 sesquiterpene products, and the latter 52, which together accounted for many of the sesquiterpenes identified in the oleoresin from grand fir. The deduced amino acid sequences of the two proteins were 83% similar and 65% identical, with high similarity to known monoterpene and diterpene synthases from grand fir. The multi-step, multi-product reactions catalysed by these enzymes are amongst the most complex of any terpenoid cyclase so far described.

Infection of cotton (Gossypium species) with the fungus Verticillium dahliae induces formation of aromatic phytoalexins such as gossypol (see below) that are ultimately derived from cadinane sesquiterpenes. The formation of an early intermediate (+)- δ -cadinene 174 in enzyme preparations from G. barbadense has been investigated by feeding ²H-labelled FPP and nerolidyl PP precursors.¹⁷⁰ Labelling patterns generated were consistent with the sequence shown in Scheme 36, in which the nerolidyl cation cyclizes to a germacradienyl cation 173 followed by a 1,3-hydride shift, a second cyclization, then proton loss. Thus, (1-RS)-[1-²H]-FPP was converted into [5-²H]- and $[11-{}^{2}H]-\delta$ -cadinene, demonstrating the 1,3-hydride shift, and a ²H₅-labelled sample of nerolidyl PP was converted with retention of all labels. δ -Cadinene synthase activity is not present until several hours after infection with the fungus, and precedes production of the gossypol-related phytoalexins. In previous investigations, three cDNAs for the (+)- δ -cadinene cyclase (CAD1) had been characterized in G. arboreum, and, on the basis of sequence similarities, these were grouped into two subfamilies cad1-C (2 members) and cad1-A (1 member). A new member of the CAD1 family has been isolated from a G. arboreum cDNA library, and has also been assigned to the cad1-C family.¹⁷¹ Desoxyhemigossypol 175 is a key intermediate in the later stages of the gossypol 178 pathway which proceeds via hemigossypol 177 (Scheme 37). A methyltransferase enzyme which specifically methylates the 6-position of desoxyhemigossypol giving 176 has been isolated from G. barbadense tissue

Scheme 36 *Enzyme*: δ-cadinene synthase.

infected with *Verticillium dahliae*.¹⁷² Although gossypol and some of the other cotton phytoalexins do not contain *O*-methyl groups, a series of methylated derivatives are formed, and characterized by being less toxic to fungi. The enzyme is a dimer, does not require Mg^{2+} , and appears specific for desoxyhemi-gossypol, not methylating any of a wide range of diphenol or dinaphthol substrates tested.

Epicubenol synthase from *Streptomyces* sp. LL-B7 catalyses the cyclization of FPP to epicubenol **179** (Scheme 38). The origin of the introduced hydroxy group has been investigated by incubating the partially purified enzyme with FPP in the presence of ¹⁸O-labelled water, demonstrating exclusive derivation from water.¹⁷³ Although direct formation of the alcohol by quenching of the cation with water is the most reasonable mechanistic possibility, in the monoterpene field, borneol is known to arise by hydrolysis of the diphosphate, which is formed by recapture of the diphosphate leaving group of the GPP substrate.

Scheme 38 Enzyme: epicubenol synthase.

(E)- α -Bisabolene synthase is one of two inducible sesquiterpene synthases of grand fir (Abies grandis), and a cDNA encoding this enzyme has been isolated from a wound-induced grand fir stem library.¹⁷⁴ This was functionally expressed in E. coli and shown to produce (E)- α -bisabolene 180 as the sole product from FPP in the presence of a divalent cation Mg^{2+} or Mn^{2+} . The expressed synthase resembles other terpenoid synthases in sequence, except for a large 216-amino acid amino terminal insertion. A similar large insertion has also been found in the diterpene synthases abietadiene synthase and taxadiene synthase, but has not been noted previously in grand fir monoterpene and sesquiterpene synthases. When incubated with GPP, monoterpene synthase activity was also noted, the enzyme producing (4R)-limonene 112 (Scheme 39). However, GGPP was not utilized (compare epi-cedrol synthase, below). The presence of an Arg²⁵–Arg²⁶ tandem motif, an element previously found only in monoterpene synthases that require an isomerization step in the reaction sequence, is consistent with the cyclization proceeding through the tertiary allylic intermediate nerolidyl PP (Scheme 39). Labelled (E)- α -bisabolene 180 was also shown to be a precursor of other metabolites in cell suspension cultures of grand fir. The predominant product identified was todotamuic acid 181 (Scheme 40).

The biosynthesis of trichothecene mycotoxins proceeds from

FPP *via* the intermediate hydrocarbon trichodiene **182**. Trichodiene formation is catalysed by the enzyme trichodiene synthase, and involves preliminary isomerization to (3R)-nerolidyl diphosphate, then cyclization and subsequent rearrangements (Scheme 41). In experiments to target the proposed active site base responsible for the final deprotonation reaction, the 10cyclopropylidene analogue **183** of farnesyl diphosphate was incubated with recombinant *Fusarium sporotrichioides* trichodiene synthase.¹⁷⁵ The cyclopropylidene analogue proved to be a mechanism-based inhibitor of the enzyme, and also acted as a substrate in that three unidentified sesquiterpene hydrocarbon products were detected.

During formation of the trichothecene skeleton, trichodiene 182 is oxygenated at several positions and subjected to further cyclization. Isotrichodiol 186, isotrichotriol 187, and isotrichodermin 188 feature among the proven intermediates in the pathway building up the substitution pattern of 3-acetyldeoxynivalenol (3-AcDON) 189 in Fusarium culmorum (Scheme 42). The first two oxygenation steps have now been shown to be hydroxylation at position 2 leading to 2a-hydroxytrichodiene **184**, followed by epoxidation to give 12,13-epoxy-9,10-tricho-ene- 2α -ol **185**.¹⁷⁶ ¹³C-Labelled **184** and **185** were specifically incorporated into 3-AcDON and also into sambucinol (SOL) 193 in F. culmorum cultures. Neither 2β-hydroxytrichodiene nor 12,13-epoxytrichodiene were precursors. In some experiments, incorporations into preSOL 192, a known precursor of SOL, and into a dead-end metabolite apotrichodiol 191 were also recorded. Both 184 and 185 could also be detected at low levels in the cultures. SOL, preSOL and apotrichodiol are believed to arise from isotrichodiol 186 via the unsubstituted trichothecene EPT 190, whereas the oxygenated trichothecenes branch away via isotrichotriol 187 (Scheme 42).

An interesting observation is that the 3-O-acetyl of isotrichodermin 188 is actually lost and then replaced during incorporation into 3-AcDON 189 (see ref. 1). 3-Acetylation appears to significantly reduce toxicity in trichothecenes, and thus this esterification may play some role in protecting the host organism from its toxic metabolites. A gene Tri101 responsible for the 3-O-acetvlation reaction has been cloned from a Fusarium graminearum cDNA library and expressed in the yeast Schizosaccharomyces pombe.¹⁷⁷ Yeast transformants resistant to trichothecenes all contained a cDNA for Tri101. The protein TRI101 expressed in E. coli was demonstrated to catalyse specifically the 3-O-acetylation of several representative trichothecenes. The resistance gene in F. graminearum is not part of the trichothecene biosynthetic gene cluster. In further studies,¹⁷⁸ the gene was shown to be located between the two 'house-keeping' genes for UTP-ammonia ligase and phosphate permease. Its isolation from the trichothecene gene cluster is attributed to independent evolution. Disruption of a homologue of TRI101 in F. sporotrichioides produced mutants unable to synthesize T-2 toxin 194 which accumulated isotrichodermol 195 and small amounts of trichothecenes not normally encountered in cultures of the parent strain.¹⁷⁹ Again, this is consistent with the enzyme TRI101 converting isotrichodermol into isotrichodermin. Disruption of another F. sporotrichioides gene, TRI11, also results in altered trichothecene metabolism, and in this case accumulation of isotrichodermin 188.¹⁸⁰ The nucleotide sequence of TRI11 predicts a polypeptide of the cytochrome P-450 family, and it is suggested that it may encode a C-15 hydroxylase involved in trichothecene

Scheme 39 Enzyme: (E)- α -bisabolene synthase.

180 (4*R*)-(*E*)-α-bisabolene

181 todomatuic acid

biosynthesis. A novel gene *Tri102* in the gene cluster of *F. graminearum* is involved in toxin transport,¹⁸¹ and a similar function is ascribed to the gene *TRI12* in *F. sporotrichioides*.¹⁸² Cultures of the liverwort *Heteroscyphus planus* also produce

the irregular sesquiterpene β -barbatene **196** which has been proposed to be related biogenetically to the trichothecenes. Indeed, recent evidence now confirms it appears to share the early pathway almost as far as trichodiene, though instead of losing a proton to form trichodiene, a further cyclization occurs.¹⁸³ Thus, labelling experiments with deuteriated mevalonates, ¹³C- and ²H-labelled acetates, labelled glycerol and glucose initially showed the exclusive operation of the mevalonate pathway. Labelling patterns then confirmed the 1,4hydride shift, and double 1,2-methyl shifts, as in the formation of trichodiene (Scheme 41). β -Barbatene **196** formation is then formulated as a consequence of an additional ring cyclization, followed by loss of a proton (Scheme 43).

Scheme 43

196 β-barbatene

Scheme 42

Artemisinin (qinghaosu) (see below) is a sesquiterpene derivative containing a peroxide linkage that has been shown to be crucial for the antimalarial activity displayed by this compound. The cadinane derivative artemisinic acid is known to be a precursor of the highly modified structure of artemisinin, but a number of very different hypothetical sequences have been proposed over the years. Recent studies are now allowing parts of the pathway to be defined with more certainty. The initial step appears to be formation of amorpha-4,11-diene **199** (Scheme 44).¹⁸⁴ Small amounts of **199** could be extracted from

Scheme 44 *Enzyme*: amorpha-4,11-diene synthase.

the leaves. A number of sesquiterpene synthase activities from leaves of Artemisia annua could be demonstrated, one of which catalysed formation of 199 from FPP. The enzyme possessed properties typical of sesquiterpene synthases. A cDNA clone encoding this enzyme was subsequently isolated.¹⁸⁵ This allowed an amino acid sequence for the enzyme to be deduced, showing some 32-51% identity with other sesquiterpene cyclases. When expressed in E. coli, the recombinant enzyme catalysed formation of a range of olefinic and oxygenated sesquiterpene products, of which amorpha-4,11-diene (91.2%) predominated. Formation of amorpha-4,11-diene is formulated as involving initial cyclization of FPP to a bisabolyl cation 197 or to a cis-germacryl cation 198 (Scheme 44). The formation of α -bisabolol 200 and β -sesquiphellandrene 201 as minor products, and a lack of germacrene products, seems to favour the intermediacy of the bisabolyl cation, however. Essentially identical conclusions were obtained in independent studies on the same system.186

Artemisinic acid **202** would arise by a terminal oxidation of amorpha-4,11-diene **199** (Scheme 45). Isolation of dihydro-

artemisinic acid 203 from leaves of Artemisia annua and an interesting oxidative conversion of this compound into artemisinin 205 led to the suggestion that a similar chemical, nonenzymic sequence may occur in nature.¹⁸⁷ When dihydroartemisinic acid was subjected to photooxidation with singlet oxygen, it gave initially the hydroperoxide 204. This reaction is analogous to photooxidation of polyunsaturated fatty acids to hydroperoxides. Ring cleavage of the hydroperoxide induced by air oxidation (triplet oxygen) and subsequent ring formations generates the artemisinin system (Scheme 45). Very strong support for this hypothesis is provided by the subsequent isolation of the hydroperoxide 204 from Artemisia annua.¹⁸⁸ The presence of dihydroartemisinic acid 203 and its hydroperoxide 204 in the plant, and the mild oxidizing conditions under which 203 can be converted into artemisinin 205, provide evidence that a nonenzymic photochemical conversion is responsible for the late stages of artemisinin biosynthesis. Indeed, the presence of high levels of dihydroartemisinic acid in A. annua is suggested to give the plant protection against oxidizing species, such as singlet oxygen, reacting with these species, and that artemisinin is the by-product of this scavenging.¹⁸⁹ On the other hand, arteannuin B 206 has also been implicated in earlier feeding experiments as an intermediate between artemisinic acid and artemisinin. Recent studies have shown that the reduced form, dihydroarteannuin B 207, can be converted by an enzyme system from A. annua into artemisinin, with the addition of cofactors ATP, NADPH, Mg²⁺ and Mn²⁺ optimizing yields.¹⁹⁰ Further clarification of this pathway is awaited with interest.

A cDNA clone encoding epi-cedrol synthase has been isolated from *Artemisia annua*.¹⁹¹ The deduced amino acid sequence of the enzyme was 32-43% identical with sequences of other known sesquiterpene cyclases. When expressed in E. coli, the recombinant enzyme catalysed formation of both olefinic (3%) and oxygenated (97%) sesquiterpenes from FPP, the major component being epi-cedrol 210. The enzyme was not active with GGPP as substrate, but did convert GPP into monoterpenes (limonene, terpinolene, γ-terpinene, myrcene, αterpinene), though at a lower rate (compare α -bisabolene synthase, above). The proposed sequences to epi-cedrol (and some other metabolites) are shown in Scheme 46. This involves 1,2hydride shift from the bisabolyl cation, followed by syn-6,10 ring closure generating the acorane skeleton. The cedryl cation 209 originates via 2,11-closure from the acoryl cation 208. When guenched by water, epi-cedrol 210 and cedrol 211 are produced in a ratio of 96:4, perhaps due to preferential facial attack by coordinated water at the active site, or because of steric hindrance from the methyl groups. The high proportion of oxygenated products (quenching by water) relative to olefinic products (loss of proton) is rather unusual among known sesquiterpene cyclases, and, most interestingly, the cedrols are not significant metabolites in A. annua. Cloning of epi-cedrol synthase from A. annua has also been accomplished in independent studies, with similar results.¹⁹²

Pentalenene synthase catalyses the conversion of FPP into pentalenene **213** in *Streptomyces* UC5319, and extensive studies have supported the cyclization mechanism shown in Scheme 47. It had been postulated that a single active-site base might be responsible for the successive deprotonation-reprotonationdeprotonation steps, and X-ray studies had indicated that a His-309 residue appeared ideally suited for abstraction of the

relevant protons. To investigate the proposed role of H309, a series of mutant enzymes was constructed, in which this histidine was replaced by alanine, serine, cysteine, or phenylalanine.¹⁹³Unexpectedly, all four mutants retained substantial cyclase activity, without any really substantial changes in kinetic parameters. The major product in each case was pentalenene 213, accompanied by up to 20% of two additional sesquiterpenes, Δ^6 -protoilludene 214 and germacrene A 215. Δ^6 -Protoilludene 214 formation is readily explained by cyclization of the natural seco-illudyl cation intermediate 212 (Scheme 47), whilst the production of germacrene A requires an alternative Markovnikov addition to the 10.11-double bond of FPP. The results establish that H309 is not required for cyclase activity, but normally it could play a role in the final deprotonation step since no other basic amino acid residue is apparently positioned correctly. In the mutant enzymes, some other group must perform this function. Notably, the deprotonations leading to 214 and 215 involve protons chemically and geometrically distinct from that lost in the generation of pentalenene.

Sites of incorporation of ¹³C-labelled acetates and [1-¹³C, 2-²H₃]acetate into the fomannosane sesquiterpenes illudosin **216** and illudin M **217**, produced by the fungus *Omphalotus nidiformis*, lead to the conclusion that FPP is cyclized *via* the humulyl and protoilludyl cations as shown in Scheme 47.¹⁹⁴ This is essentially as expected from earlier studies in the fomannosane series, apart from the formation from [1-¹³C,2-²H₃]acetate of some labelled illudosin species with two deuteriums attached to C-6 and also ¹³C at C-5. A mechanism has been proposed in which some exchange occurs *via* non-stereospecific reprotonation during the carbocation cyclization–rearrangement, giving the appearance of an intramolecular rearrangement. Δ^6 -protoilludene **214** is almost certainly an intermediate (Scheme 48).

The biotransformation of cubenene **218**, but not calamenene **219**, to 7-hydroxycalamenene **220** in cultures of the liverwort *Heteroscyphus planus* suggests this metabolite is formed by hydroxylation of the methylene carbon between the unconjugated double bonds, rather than by an aromatic hydroxylation (Scheme 49).¹⁹⁵

NMR analyses of striatol **222** produced by suspension cultures of the liverwort *Ptycanthus striatus* in the presence of $[2^{-13}C]$ - and $[4,4^{-2}H_2]$ -labelled mevalonates have established that cyclization occurs between the distal and central double bond in FPP, followed by a concerted sequence of 1,2-migrations of hydrogen and a methyl group.¹⁹⁶ These, and the stereochemical consequences, are shown in Scheme 50. The early part of this pathway leading to cation **221** has also been encountered in the biosynthesis of pinguisane sesquiterpenoids, also metabolites of certain liverworts, so that cation **221** may be a common intermediate to striatanes and pinguisanes (see ref. 1). The same organism also synthesizes the uncommon tricyclic sesquiterpenes kelsoene **224** and prespatane **226** which appear structurally

unrelated to striatanes. Feeding of [2-¹³C]mevalonate produced labelling patterns rationalized in terms of a biosynthetic sequence *via* a germacradienyl cation (Scheme 51).¹⁹⁷ Two further cyclizations would generate the cyclopentane and cyclopropyl rings in the alloaromadendranyl cation **223**. The production of kelsoene then requires cleavage of the cyclopropyl ring, and ring closure between C-1 and C-4. Final proton loss appears to occur equally from either of the *gem*-dimethyl groups. Prespatane **226** may arise *via* the guaianyl cation **225** (Scheme 51).

Marine molluscs belonging to the genus *Dendrobis* appear to employ sesquiterpenes of the drimane series as chemical defence agents against predators. Specimens of two species, the Mediterranean *D. limbata* and the Pacific *D. arborescens* were used in feeding experiments to demonstrate *de novo* synthesis of 7-deacetoxyolepupuane **227** from labelled MVA.¹⁹⁸ Labelling in other drimane sesquiterpenoids suggested that **227** could be the precursor of olepupuane **228** and polygodial **230**, and their acetoxy derivatives **229** and **231** (Scheme 52).

Biosynthetic studies on the phytotoxin sorokinianin 233 in the phytopathogen *Bipolaris sorokiniana* have confirmed that it is fundamentally a sesquiterpene with an additional C₃ portion derived from acetate.¹⁹⁹ It has the same carbon skeleton as prehelminthosporol 232, a sesquiterpene that is the major metabolite of this organism, and 232 is proposed to be the precursor of sorokinianin. Thus, $[1,2-^{13}C_2]$ acetate produced the same labelling patterns in the C₁₅ skeleton of 233 as it did in 232, and a further intact C₂ unit was incorporated into the lactone portion. Addition of prehelminthosporol to the cultures increased production of sorokinianin, as did feeding of succinic and fumaric acids. Intact incorporation of $[2,3-^{13}C_2]$ succinic acid into sorokinianin at positions C-1'-C-2' confirmed the TCA cycle origin of the lactone portion. A proposed biosynthetic pathway is shown in Scheme 53.

The plant growth regulator abscisic acid (ABA) 43 is produced from FPP by two main routes, which involve either direct cyclization of the C15 precursor or alternatively initial formation of a C₄₀ carotenoid followed by oxidative metabolism. The former direct pathway is utilized by several species of fungi. Plants produce ABA by the indirect route, cleaving carotenoids with a suitable ring system through the polyene chain to xanthoxin 236, which is then modified to ABA via the aldehyde 237 (Scheme 54). A gene from bean (Phaseolus vulgaris) has been cloned, and shown to encode the cleavage enzyme 9cis-epoxycarotenoid dioxygenase.²⁰⁰ The recombinant protein catalysed cleavage of both 9-cis-violaxanthin 234 and 9'-cisneoxanthin 235. This enzyme appears to play a key regulatory role in induced ABA synthesis. The first step in ABA catabolism is catalysed by ABA 8'-hydroxylase, also a key enzyme in regulating ABA levels. This enzyme, which converts ABA

223 alloaromadendranyl cation

Scheme 51

into 8'-hydroxy-ABA 238, has been isolated from a microsomal fraction in suspension cultured maize (Zea mays) and shown to have the characteristics of a cytochrome P450 monooxygenase.201

A group of so-called homoterpenes containing eleven carbons are, in fact, more correctly considered as degraded sesquiterpenes, since they are formed by oxidative cleavage of four carbon atoms. Thus, 4,8-dimethylnona-1,3(E),7-triene 241 is known to originate in a range of plants from nerolidol 239. Cucumber (Cucumis sativus) and lima bean (Phaseolus lunatus) both produce 241 in response to herbivore attack. It has now been shown that both cucumber and lima bean infested with spider mite contain a sesquiterpene synthase activity catalysing the formation of (3S)-(E)-nerolidol 239 from FPP.²⁰² The enzyme activity is not present in uninfested cucumber leaves, and is only weakly active in uninfested lima bean leaves, but is strongly induced by spider mite in both species. The activity correlated well with release of 241 and seems to play a regulatory role in the release of this metabolite. In independent duce a (3S)-(E)-nerolidol synthase enzyme activity inducible as a result of feeding by the larvae of beet armyworm. Labelled nerolidol was incorporated into 241, and again there was a close correlation between increase in nerolidol synthase activity and homoterpene emission.

The oxidative degradation of nerolidol to 241 appears to proceed via geranylacetone 240 and with exclusive loss of H-5S from nerolidol (H-4S from geranylacetone). The oxidative C-C bond cleavage appears to resemble processes seen in steroid dealkylation or furocoumarin formation. The stereochemical course of bond cleavage in 241 biosynthesis has been probed by feeding chirally labelled nerolidol and geranylacetone precursors to flowers of Magnolia liliiflora nigra or leaves of Phaseolus lunatus.²⁰⁴ It was established with both precursors that a syn elimination was involved (Scheme 55). This is consistent with a cytochrome P-450-dependent process, and a likely mechanism is presented in Scheme 56.

8 Diterpenoids

Geranylgeranyl diphosphate (GGPP), the product of GGPP synthase, is the normal progenitor of diterpenoids. Plaunotol 242 is perhaps one of the simplest diterpenoid derivatives and is found in leaves of Croton sublyratus. An enzyme activity involved in the biosynthesis of plaunotol has been demonstrated in C. sublyratus extracts, and shown to catalyse

18-hydroxylation of geranylgeraniol 243.²⁰⁵ The enzyme required NADPH and appeared highly specific for geranylgeraniol, since no reaction was observed with either geraniol or farnesol. The enzyme extracts also contained a phosphatase activity hydrolysing GGPP to geranylgeraniol.

242 plaunotol

Casbene 244 is a diterpene phytoalexin formed from GGPP in castor bean (Ricinus communis) by the action of casbene synthase (Scheme 57). Overexpression of casbene synthase as a

soluble fusion protein in E. coli has recently been reported.206 The protein resembles several terpene cyclases, and shows the typical aspartate-rich DDTID region spanning amino acids 355-359. Seven mutants were prepared by site-specific mutagenesis, establishing the requirement for Asp-355 and Asp-356, whilst Asp-359 was not essential. In a coupled reaction using IPP isomerase, GGPP synthase, and casbene synthase, ¹³Clabelled casbene has been synthesized in more than 80% yield from [13C]-IPP.207

The diterpenoid portion of the important anticancer drug Taxol (paclitaxel) 250 is formed from GGPP via the hydrocarbon taxadiene 247. Taxadiene synthase from Taxus species catalyses cyclization of GGPP to taxadiene and earlier studies have indicated the mechanism involves ionization and cvclization to a transient verticillyl intermediate 245, which is proposed to have the 11R configuration to allow intramolecular transfer of the C-11 proton to C-7 to initiate transannular ring closure to the taxenyl cation 246, followed by deprotonation

(Scheme 58). The mechanism of the cyclization and of this crucial hydrogen migration have been probed further by incubation of a recombinant truncated (see below) T. brevifolia taxadiene synthase with specifically deuteriated substrates.²⁰⁸ The stereochemistry of the C-5 deprotonation step was established to involve loss of the β proton, originally the 4-pro-R proton of GGPP. Incubation of the enzyme with [10-²H₁]GGPP showed that essentially all this label was transferred to C-7, consistent with the previously observed transfer of hydride from C-11 of the verticillyl cation intermediate. The label was deduced by 1D DPFGSE-TOCSY NMR to reside in the 7α position. Thus, the proton migration occurs from the same face of the substrate. Modelling studies then suggested that an unassisted intramolecular transfer of this proton is the most plausible mechanism for the final ring closure step. Thus, the C-7/C-8 olefine serves as the Bronsted base that quenches the carbocation at C-12, and no active site enzyme base needs to be invoked for the process. To achieve this conversion of the verticill-12-vl cation into the isomeric verticill-8-yl cation, a conformational twist in the 12-membered ring is required, which also brings the C-3/C-4 double bond to the vicinity of the C-8 cation for the final ring formation.

These experiments were achievable because of the availability of sufficient amounts of recombinant enzyme in a truncated form. Taxadiene synthase is translated as a preprotein bearing an N-terminal targeting sequence for localization to and processing in the plasmids. However, in high level expression systems, this transit peptide causes purification problems, and can also lead to catalytic impairment. In the absence of definite information about the transit peptide-mature enzyme cleavage site, a series of N-terminally truncated enzymes was prepared by expression of the corresponding cDNAs.²⁰⁹ Deletion of up to 79 residues yielded functional protein, whereas deletion of 93 or more residues eliminated activity completely. A 60 amino acid deletion proved the most effective. This enzyme produced taxadiene as the major product (94%) along with small amounts of the isomeric taxa-4(20),11(12)-diene 251 (5%) and verticillene 252 (1%). The enzyme failed to convert 2,7cyclogeranylgeranyl diphosphate 253, supporting macrocyclization to the verticillyl intermediate, rather than an alternative initial formation of the C ring. In an independent study,²¹⁰ a truncated taxadiene synthase 78 residues shorter than the wildtype protein was found to produce taxadiene 247 (87%) and the isomer 251 (13%) from GGPP. However, this protein would also utilize FPP, giving a mixture of four sesquiterpenes, characterized as (E)- β -farnesene 254, (E,E)- α -farnesene 255, γ -curcumene 256, and (E)- γ -bisabolene 257. Homology in the C-terminal domain with (E)- α -bisabolene synthase from Abies grandis may partly explain the cross reactivity towards GGPP and FPP.

In the biosynthesis of taxol, taxadiene is hydroxylated at position 5a by a cytochrome P450-dependent hydroxylase giving taxa-4(20),11(12)-dien-5a-ol 248, followed by acetylation of this hydroxy group giving 249 prior to further modifications (Scheme 58). A soluble O-acetyltransferase has been demonstrated in extracts of Taxus canadensis and T. cuspidata cells induced with methyl jasmonate to produce taxol, and partially purified.²¹¹ The enzyme showed high selectivity and affinity for the taxadienol and acetyl-CoA substrates, and would not acetylate more adavanced taxol precursors such as 10-deacetylbaccatin III 258 or baccatin III 259. A full length cDNA encoding this transferase has been isolated and expressed in E. coli to yield a functional enzyme.²¹² This enzyme shares considerable homology with other known acyl transferases of plant origin.

Oxygenation reactions and esterifications during the later stages of taxol biosynthesis have yet to be clarified. During formation of the related taxoids taxuyunnanine C 260 and yunnanxane 261 in Taxus chinensis cell cultures it has been demonstrated by feeding [13C]glucose and 18O2 that all oxygen atoms attached to the taxoid ring system are derived from

250 Taxol (paclitaxel)

Scheme 58 Enzymes: i, taxadiene synthase; ii, taxadiene hydroxylase; iii, taxadienol O-acetyltransferase.

252 verticillene

251 taxa-4(20),11(12)-diene

253 2,7-cyclo-GGPP

255 (*E*,*E*)- α -farnesene

256 γ-curcumene

257 (E)-γ-bisabolene

HO---HO HO ACO

258 10-deacetylbaccatin III R = H 259 baccatin III R = Ac molecular oxygen.²¹³ The introduction of oxygens is thus likely to be catalysed by cytochrome P450-type monooxygenases. In addition, the acyl side-chain at position 14 of yunnanxane **261** also carried a hydroxy group derived from molecular oxygen. This leads to the conclusion that the 2-methyl-3-hydroxybutyryl ester group of **261** is probably derived from 2-methybutyric acid, which is generally formed in plants *via* isoleucine (Scheme 59). An *O*-acetyltransferase enzyme from a cytosolic fraction of

Taxus chinensis cell suspension cultures has been purified to apparent homogeneity.²¹⁴ The purified protein O-acetylated 10deacetyltaxuyunnanine C, giving taxuyunnanine C 260, and was highly regio- and stereo-specific towards the 10β-hydroxy group of a number of taxane substrates. It was also active towards 10-deacetylbaccatin III 258 and congeners, which have significant structural differences to the T. chinensis metabolites. A partially purified O-acetyltransferase which acetylates the 10hydroxy group of 10-deacetylbaccatin III 258 yielding baccatin III **259** has been obtained from leaves and cell suspension cultures of *Taxus cuspidata*.²¹⁵ The enzyme did not significantly catalyse acetylation of 10-deacetyltaxol to taxol. A cDNA clone for the *Taxus cuspidata O*-acetyltransferase has been isolated and expressed in *E. coli*²¹⁶ The recombinant acetyltransferase is regiospecific toward the 10-hydroxy group of taxanes, and does not acetylate any of the other three hydroxyls, nor does it acetylate the hydroxy group of taxa-4(20),11(12)-dien-5a-ol 248. Amino acid sequence comparison of this enzyme with taxadienol-5-O-acetyltransferase and other known acyltransferases of plant origin indicates a significant degree of homology (80% and 64-67% respectively).

A cDNA clone encoding a taxane 2α -O-benzoyltransferase has been isolated from *Taxus cuspidata*, and used to produce a recombinant protein.²¹⁷ This enzyme catalyses the benzoylation of 2-debenzoyl-7,13-diacetylbaccatin III **262** to 7,13-diacetylbaccatin III **263** using benzoyl-CoA as acyl donor (Scheme 60). At present, the natural substrate for this enzyme has not been established, but it would appear to function in a late step in the taxol biosynthetic pathway. It does not benzoylate any of the hydroxyl groups in 10-deacetylbaccatin III **258**, nor either of

the hydroxy groups in the less elaborated taxa-4(20),11(12)dien- 5α -ol **248**.

The phenylisoserine side-chain of taxol is known to be formed from phenylalanine *via* β -phenylalanine **264**. A phenylalanine aminomutase enzyme catalysing this conversion has now been detected in cell-free extracts of *Taxus brevifolia*.²¹⁸ The product was established to have the *R*-configuration, the same as in taxol, though *T. brevifolia* tissues are known to contain both isomers. Labelling studies showed the nitrogen migration is strictly intramolecular, the *pro-R* hydrogen of *S*-phenylalanine remains at C-3 of β -phenylalanine, whilst the *pro-3S* hydrogen migrates to C-2 but this migration is partly intermolecular (Scheme 61). The substrate also undergoes some

Scheme 61 Enzyme: phenylalanine aminomutase.

hydrogen exchange at C-2, probably through an α -amino acid racemase. Therefore, the departing *pro-S* hydrogen is replaced by the migrating nitrogen with retention of configuration at C-3, suggesting that the mechanism of action of this plant enzyme is different from that of the known microbial aminomutases.

The biosynthesis of taxol and related compounds has been reviewed in recent articles.^{219,220}

Earlier studies on fusicoccin biosynthesis had postulated fusicocca-1,10(14)-diene **265** to be a hydrocarbon intermediate, involving hydride shifts as shown (Scheme 62). However, the more recent isolation of fusicocca-2,10(14)-diene **266** from *Phomopsis (Fusicoccum) amygdali* led to consideration of this isomer as an intermediate, and this now appears to be the hydrocarbon involved.²²¹ Thus cultures of *P. amygdali* were able to transform the hydrophilic hydroxylated derivative **270** to the triol **271**, whereas the corresponding 1,2 alkene was not metabolized. Further, the 8β -hydroxy derivative **267** was a satisfactory precursor of fusicoccin J **268**, and suggested that 8β -hydroxylation might be the first step in the conversion. In

Scheme 62

additional experiments, **267** was isolated from *P. anygdali* and labelled fusicocca-2,10(14)-diene **266** was converted by the fungus into both **268** and fusicoccin A **269**.²²² A pathway from GGPP to **266**, followed by non-allylic 8β -hydroxylation to **267**, is now postulated as the early part of the pathway (Scheme 63).

This revision of the double bond position in the intermediate hydrocarbon is reminiscent of a similar occasion when the taxadiene intermediate in taxol biosynthesis was shown to be different from that postulated according to structural similarity with the final product.

The diterpene vertucosan- 2β -ol **262** from the green phototrophic eubacterium *Chloroflexus aurantiacus* is biosynthesized *via* mevalonate.⁸⁸ In a retrobiosynthetic analysis, labelling

Scheme 64

patterns in verrucosan-2β-ol formed from single- and doublelabelled [¹³C]acetate precursors were compared with labelling patterns of metabolic intermediates such as acetyl-CoA, pyruvate, and glyceraldehyde 3-phosphate, which could be deduced from patterns observed in protein-derived amino acids. By this means, mevalonate rather than DXP was shown to be a precursor, and, based on the labelling, a possible pathway (Scheme 64) was proposed. The cyclization process is initiated by solvolysis of geranyllinalyl diphosphate 272 leading to a bicyclic intermediate 273, which undergoes a 1,2-rearrangement, to then generate a tricyclic system 274. Subsequent transformations are accommodated by a 1,5-hydride transfer, then formation of a cyclopropane ring. A rearrangement of the first-formed cyclopropylcarbinyl ion allows production of the required carbon skeleton. In marked contrast to the biosynthesis of 62 from mevalonate, similar retrobiosynthetic studies on the formation of the structurally related 8α-acetoxy-13α-hydroxy-5-oxo-13epi-neoverrucosane 61 in the liverwort Fossombronia alaskana have shown it to be deoxyxylulose phosphate-derived.⁸⁷ The proposed pathway (Scheme 64) shares the early steps of the verrucosan-2β-ol pathway, with the epi-configuration at C-13 being generated during formation of the tricyclic system 275. The neoverrucosane skeleton is analogous to the first-formed cyclopropylcarbinyl ion of the verrucosan-2\beta-ol sequence. The postulated 1,5-hydride shift was confirmed by an incorporation experiment using [6,6-²H₂]glucose. This resulted in a product with a migrated deuterium at position 15.

Resin acids such as abietic acid are major components of the oleoresin synthesized by grand fir (*Abies grandis*) as a defensive secretion against insect and pathogen attack. The diterpene (-)-abietadiene **279**, obtained from cyclization of GGPP by the action of abietadiene synthase, is the first formed product on the pathway to abietic acid and related structures. A cDNA encoding abietadiene synthase has been isolated from grand fir and the heterologously expressed bifunctional enzyme

shown to catalyse both the protonation-initiated cyclization of GGPP to the intermediate (+)-copalyl diphosphate 276 and the ionization-dependent cyclization of (+)-copalyl PP, via a pimaraenyl cation 277, to olefin end-products (see ref. 1). Since this recombinant protein proved unsuitable for detailed study, a truncation series has been constructed to delete the targeting sequence and prepare a pseudomature form of the enzyme.²²³ A pseudomature synthase having 84 residues deleted from the preprotein converted GGPP and (+)-copalyl PP into a nearly equal mixture of abietadiene 279, levopimaradiene 280, and neoabietadiene 281, as indicated in Scheme 65, as well as three minor products, including sandaracopimaradiene 278 and palustradiene 282. (-)-Copalyl PP was not utilized. Kinetic evaluation with GGPP and (+)-copalyl PP provided evidence for two functionally distinct active sites, one for the cyclization of GGPP to (+)-copalyl PP, and a second for the cyclization of (+)-copalyl PP to diterpene end products. The second cyclization proves to be the rate limiting step. The mechanism of the cyclizations catalysed by the recombinant enzyme has been examined further by the use of deuteriated substrates.²²⁴ These demonstrated that [19-2H3]GGPP 283 was transformed with the retention of two labels, located at positions 14 and 16, and label from (E)-[17-²H₁]copalyl PP **284** was subsequently located at position 16 (Scheme 66). Thus, abietadiene synthase effects intramolecular proton transfer from position 17 of copalyl PP to the terminal carbon of the vinyl group which becomes the pro-S methyl, and the methyl migration occurs to the si face at C-15 of a putative pimara-8(14),15-diene 285 intermediate. Two plausible mechanisms for this novel cyclization-rearrangement are shown in Scheme 67, involving either intramolecular hydrogen transfer (path A), or enzyme-mediated proton elimination, followed by reincorporation of this proton (path B).

The aphidicolane skeleton of aphidicolin **290** is the result of further cyclization of a 9β -labdadienyl system **286** with additional rearrangement as shown in Scheme 68. A sequence

of hydroxylations then converts aphidicolan-16β-ol **287** into aphidicolin. Treatment of cultures of the aphidicolin producer *Phoma betae* with inhibitors of cytochrome P-450 enzymes caused accumulation of hydroxylated intermediates **287**, **288**, and **289**.²²⁵ Further experiments demonstrated that ¹⁴C-labelled

Scheme 67

286 9β-labdadienyl diphosphate

samples of **287** were converted into aphidicolin by the cultures, or into **289** in the presence of a P-450 inhibitor.

Studies on the biosynthesis and metabolism of the gibberellins (GAs) always account for a considerable proportion of the diterpenoid research literature. These compounds, with over 120 different structures now known, play a significant role as plant growth hormones, and have their origins in *ent*-kaurene **292**. *ent*-Kaurene is produced from GGPP by the action of two enzymes, firstly copalyl PP synthase (*ent*-kaurene synthase A), which cyclizes the substrate to (–)-copalyl PP **291** in a protonation-initiated cyclization, and then kaurene synthase (*ent*-kaurene synthase B), which accomplishes the further cyclization and subsequent rearrangement initiated by loss of diphosphate (Scheme 69).

In pumpkin (*Cucurbita maxima*), two cDNAs encoding copalyl PP synthase have been identified.²²⁶ However, in the GA-producing fungus *Phaeosphaeria* sp. L487, a bifunctional *ent*-kaurene synthase catalyses the two-step cyclization. Kinetic

Scheme 69 *Enzymes*: i, copalyl diphosphate synthase (*ent*-kaurene synthase A); ii, kaurene synthase (*ent*-kaurene synthase B); iii, *ent*-kaurene oxidase; iv, *ent*-kaurenoic acid 7 β -hydroxylase; v, GA₁₂-aldehyde synthase.

analysis of a recombinant protein indicated it had a higher affinity for copalyl PP than for GGPP, and that ent-kaurene production may be limited by the KS activity.227 Site-directed mutagenesis of aspartate-rich motifs showed that the ³¹⁸DVDD motif near the N-terminus and the ⁶⁵⁶DEFFE motif near the C-terminus may be part of the active site for the copalyl PP synthase and KS reactions, respectively. Another aspartate-rich motif ¹³²DDVLD near the N-terminus is thought to be involved in both reactions. Functional analysis of truncated mutants showed that an N-terminal 59 kDa polypeptide catalysed the copalyl PP synthase reaction, and a C-terminal 66 kDa polypeptide the KS reaction. A full-length cDNA encoding a bifunctional ent-kaurene synthase has also been isolated from Gibberella fujikuroi and subsequently expressed in E. coli.228 The deduced amino acid sequences for the Gibberella and Phaeosphaeria proteins showed high (45%) similarity.

The known sequence from *ent*-kaurene **292** to GA_{12} -aldehyde **294** is shown in Scheme 69, and involves cytochrome P-450dependent enzymes. The first of these is *ent*-kaurene oxidase, and studies in *Arabidopsis thaliana* have identified the corresponding gene *GA3*.²²⁹ The deduced amino acid sequence of the protein suggest this is from a new class of cytochrome P-450 enzymes, sharing at best 28% identity with known P-450 sequences. The gene was subsequently expressed in *Saccharomyces cerevisiae* and the transformed yeast cells possessed the ability to metabolize *ent*-kaurene to *ent*-kaurene oxidase catalyses the three oxidation steps converting the methyl into a carboxyl.²³⁰

Scheme 70 shows the usual interrelationships of the most commonly encountered plant gibberellins as established from various experimental data. The stepwise conversion of GA₁₂aldehyde 294 may proceed along three main routes: the early 13-hydroxylation pathway via GA_{53} 297 and GA_{44} 300, the early 3-hydroxylation pathway through GA14 295 and GA37 298, or by the non-early 3,13-hydroxylation pathway which involves GA12 296 and GA15 299. However, many variations to this generalization are encountered. Studies in seedlings of rice (Oryza sativa) have established the involvement of the early 13hydroxylation pathway.²³¹ Feeding experiments with labelled GA_{53} **297**, GA_{44} **300** and GA_{19} **302** implicated the sequence $GA_{53} \rightarrow GA_{44} \rightarrow GA_{19} \rightarrow GA_{20}$ **305** and the presence of these as endogenous metabolites was established. Previous metabolic studies had also indicated the $GA_{20} \rightarrow GA_1$ 306 transformation. Administration of GA₉ 304 to seedlings of normal and dwarf maize (Zea mays) showed the major metabolite to be GA₂₀ 305.²³² A number of minor metabolites were also identified, but the $GA_9 \rightarrow GA_{20}$ transformation demonstrates the possibility of late convergence of the biosynthetic branches, the early 13-hydroxylation pathway and the non-early 3,13-hydroxylation pathway. Further evidence for pathway convergence via a metabolic grid in maize was obtained from feeding experiments with other labelled substrates.²³³ Major metabolites from GA_{15} **299** were GA_{44} **300**, GA_{19} **302**, and GA_{20} **305**, whilst GA_{24} **301** gave GA_{19} **302**, and GA_{20} **305**. GA_3 **312** was one of several metabolites from GA₇ 307, and 2,3-dehydro-GA₉ 308 gave GA₅ 311. However, the inability to detect the sequence GA_{12} - $GA_{15} \rightarrow GA_{24} \rightarrow GA_9$ indicates the non-early 3,13-hydroxylation pathway probably plays a minor role in maize. cDNA corresponding to the GA4 gene of Arabidopsis thaliana has been expressed in E. coli to give protein that converted GA₉ 304 into GA₄ 303 and GA₂₀ 305 into GA₁ 306.²³⁴ GA₉ was the preferred substrate. This 3β-hydroxylase was regiospecific, with no indication of 2B-hydroxylation or of 2.3-desaturation. Other gibberellins were also hydroxylated, preferred substrates containing a polar bridge between C-4 and C-10, and 13-deoxy GAs being preferred to 13-hydroxylated compounds.

In gibberellin biosynthesis, a 20-oxidase catalyses the oxidation and elimination of C-20 to give the biologically active C_{19} GAs. A cDNA encoding 20-oxidase has been isolated from *Arabidopsis* seedlings, and overexpressed in transgenic *Arabidopsis* plants.²³⁵ The transgenic plants displayed physical symptoms of GA overproduction, with increased levels of endogenous GA₁ **306**, GA₉ **304** and GA₂₀ **305** being detected. Levels of GA₄ **303**, the predominantly active GA in *Arabidopsis*, were not affected. A cDNA clone from water-melon (*Citrullus lanatus*) that shows significant amino acid homology with GA 20-oxidases has been isolated and expressed in *E. coli* as a fusion protein.²³⁶ This protein oxidized GA₁₂ **296** to GA₉ **304**.

A major catabolic pathway for GAs is initiated by 2β -hydroxylation, a reaction catalysed by a 2-oxoglutaratedependent dioxygenase. A 2β -hydroxylase cDNA clone has been isolated from runner bean (*Phaseolus coccineus*) and expressed in *E. coli.*²³⁷ The expressed protein catalysed the GA₉ **304** \rightarrow GA₅₁ **309** conversion, with additional production of a GA₅₁-catabolite **313** having further oxidation at C-2. The

enzyme is thus multifunctional and is best described as a 2-oxidase. Three related cDNAs also encoded GA 2-oxidases. A GA 2-oxidase cDNA has also been cloned from pea (*Pisum sativum*) seeds.²³⁸ Bacterial cultures expressing the protein con-

verted GA₁ 306, GA₄ 303, GA₉ 304, and GA₂₀ 305 into their corresponding 2β -hydroxy derivatives. GA₉ 304 and GA₂₀ 305 also yielded GA₅₁-catabolite 313 and GA₂₉-catabolite 314 respectively.

Several fern species produce gibberellin-like substances termed antheridiogens. Earlier studies in *Lygodium* ferns had shown that GA_{24} **301** is a biosynthetic precursor of GA_{73} methyl ester **317** (see ref. 1) (Scheme 71). A realistic intermediate in this process is 9,11-didehydro- GA_{24} **315**, and this compound has been synthesized in labelled form and tested as a precursor of GA_{73} methyl ester in prothalli of *L. flexuosum* and *L. circinnatum*.²³⁹ In both species, substantial incorporation was obtained. The absence of the methyl ester of **315** after

the feedings supports a pathway in which the carboxyl group is methylated after conversion of GA_{24} **301** into GA_{73} **316** (Scheme 71).

Two useful reviews on the molecular biology of gibberellin biosynthesis have been published.^{240,241}

Retinoids possess a diterpenoid skeleton, but are actually derived by oxidative cleavage of a C₄₀ carotenoid, primarily βcarotene. Retinoids play two main functions in biology, retinal being involved in vision as the chromophore bound to opsins, whilst retinoic acid is the activating ligand of nuclear transcription factors. Identified metabolic interconversions involving double bond stereochemistry and oxidation state of the functional group are shown in Scheme 72. The families of retinoid dehydrogenases involved in these interconversions have been reviewed.²⁴² A stereospecific 9-cis-retinol dehydrogenase has been characterized in mouse embryonic tissues, catalysing oxidation of 9-cis-retinol 320 into 9-cis-retinal 321.243 Human hepatic cell homogenates can convert all-trans-retinol 318 into 9-cis-retinal 321, suggesting additional pathways for 9-cisretinoic acid 322 synthesis in specialized tissues.244 Recombinant murine 11-cis-retinol dehydrogenase has been found capable of oxidizing and reducing 9-cis-, 11-cis-, and 13-cisisomers of retinol and retinal, respectively.²⁴⁵ This visual cycle enzyme is also present in non-retinal ocular and non-ocular tissues, and may therefore play some role additional to its visual one. Carotenoid-depleted fruit flies, Drosophila melanogaster, produce very much less (3S)-hydroxyretinal 323 than normal flies. Feeding studies have shown that all-trans-retinal 319 can serve as a precursor of this metabolite, being first converted into (3R)-3-hydroxyretinal 324 which is then isomerized to the 3S-isomer.246 Addition of NADPH enhanced 3-hydroxyretinal production in a head homogenate, whilst CO inhibited it, suggesting the hydroxylation is cytochrome P-450-dependent.

The diterpenoid crocin **327** is a digentiobiosyl ester, and the major pigment in *Crocus sativus* stigmata (saffron). The aglycone crocetin **325** is likely to be a degraded carotenoid. A glycosylating enzyme from *C. sativus* cell cultures involved in crocin biosynthesis has been partially purified.²⁴⁷ The enzyme utilizes UDPglucose to form the diglucosyl ester **326**.

326 R = Glc $6 \rightarrow 1$

325 crocetin R = H

327 crocin R = Glc Glc

9 Sesterterpenoids

Many examples of this least common group of natural terpenoids are known, but biosynthetic studies are rather rare. A group of structurally novel sesterterpene polyols, the mangicols, has been characterized from a marine fungus, tentatively identified as Fusarium heterosporum.²⁴⁸ Feeding experiments with sodium [1,2-13C2]- and [1-13C]-acetates were conducted to investigate their biosynthetic origins. Two members of the group were isolated, mangicol A 328 and neomangicol A 329, and the results were consistent with biosynthesis from the C_{25} precursor geranylfarnesyl diphosphate. All five methyl groups

ners, precluding any methyl migrations. Three of the isoprene units were incorporated intact. The remaining two isoprene units were rearranged such that C-1 appeared to have been inserted into an isoprene composed of C-13, C-12, C-25, C-2, and C-3. A hypothetical biosynthesis accounting for these observations is proposed (Scheme 73). The initial cyclization to give an 11-membered ring is analogous to humulene ring formation. Two 1,2-alkyl shifts account for the rearrangement in the carbon skeleton. Remaining steps are simple cation-induced ring closures and 1,2-hydride transfers. The labelling pattern in neomangicol A was nearly identical to that in mangicol A, but was not contiguous through C-6-C-8, indicating the neomangicol skeleton is derived from the mangicol skeleton. A feasible explanation is a 1,2-alkyl shift from a C-7 carbocation in the mangicol skeleton to generate a tertiary cation at C-6. Subsequent modifications include halogenation, chlorination in the case of neomangicol A, bromination for neomangicol B.

10 References

- 1 P. M. Dewick, Nat. Prod. Rep., 1999, 16, 97.
- 2 P. M. Dewick, Nat. Prod. Rep., 1997, 14, 111.
- 3 P. M. Dewick, Nat. Prod. Rep., 1995, 12, 507.
- 4 J. Bohlmann, G. Meyer-Gauen and R. Croteau, Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 4126.
- 5 D. Vinarov, C. Narasimhan and H. M. Miziorko, J. Am. Chem. Soc., 1999, **121**, 270.
- 6 D. A. Vinarov and H. M. Miziorko, Biochemistry, 2000, 39, 3360.
- 7 K. Y. Chun, D. A. Vinarov, J. Zajicek and H. M. Miziorko, J. Biol.
- Chem., 2000, 275, 17946. 8 K. Y. Chun, D. A. Vinarov and H. M. Miziorko, Biochemistry, 2000, 39. 14670.
- 9 S. Takahashi, T. Kuzuyama and H. Seto, J. Bacteriol., 1999, 181, 1256
- 10 D. A. Bochar, C. V. Stauffacher and V. W. Rodwell, Mol. Genet. Metab., 1999, 66, 122.
- 11 E. I. Wilding, D.-Y. Kim, A. P. Bryant, M. N. Gwynn, R. D. Lunsford, D. McDevitt, J. E. Myers, M. Rosenberg, D. Sylvester, V. Stauffacher and V. W. Rodwell, J. Bacteriol., 2000, 182, C. 5147
- 12 A. Montalvetti, J. Pena-Diaz, R. Hurtado, L. M. Ruiz-Perez and D. Gonzalez-Pacanowska, Biochem. J., 2000, 349, 27.
- 13 A. K. Jain, R. M. Vincent and C. L. Nessler, Plant Mol. Biol., 2000, 42, 559.
- 14 A. A. del Villar-Martinez, R. Ma and O. Paredes-Lopez, J. Plant Physiol., 1999, 155, 205.

- 15 G. C. Godoy-Hernandez, J. Chappell, T. P. Devarenne, E. Garcia-Pineda, A. A. Guevara-Garcia and E. Lozoya-Gloria, J. Plant Physiol., 1998, 153, 415.
- 16 L. Tabernero, D. A. Bochar, V. W. Rodwell and C. V. Stauffacher, Proc. Natl. Acad. Sci. U.S.A., 1999, 96, 7167.
- 17 D. A. Bochar, L. Tabernero, C. V. Stauffacher and V. W. Rodwell, *Biochemistry*, 1999, 38, 8879.
- 18 D. A. Bochar, C. V. Stauffacher and V. W. Rodwell, *Biochemistry*, 1999, **38**, 15848.
- 19 M. Takagi, T. Kuzuyama, S. Takahashi and H. Seto, J. Bacteriol., 2000, 182, 4153.
- 20 A. E. Schulte, R. van der Heijden and R. Verpoorte, Arch. Biochem. Biophys., 2000, **378**, 287.
- 21 M. A. Lluch, A. Masferrer, M. Arro, A. Boronat and A. Ferrer, *Plant Mol. Biol.*, 2000, 42, 365.
- 22 A. E. Schulte, R. van der Heijden and R. Verpoorte, *Phytochemistry*, 1999, **52**, 975.
- 23 H. Cordier, F. Karst and T. Bergès, Plant Mol. Biol., 1999, 39, 953.
- 24 A. E. Leyes, J. A. Baker, F. M. Hahn and C. D. Poulter, *Chem. Commun.*, 1999, 717.
- 25 Z. Sun, F. X. Cunningham and E. Gantt, Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 11482.
- 26 A. C. Ramos-Valdivia, R. van der Heijden and R. Verpoorte, *Phytochemistry*, 1998, **48**, 961.
- 27 Y. Ershov, R. R. Gantt, F. X. Cunningham and E. Gantt, FEBS Lett., 2000, 473, 337.
- 28 M. C. Wildermuth and R. Fall, Plant Physiol., 1998, 116, 1111.
- 29 A. J. Fisher, B. M. Baker, J. P. Greenberg and R. Fall, *Arch. Biochem. Biophys.*, 2000, **383**, 128.
- 30 L. M. Lois, N. Campos, S. R. Putra, K. Danielsen, M. Rohmer and A. Boronat, Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 2105.
- 31 B. M. Lange, M. R. Wilding, D. MaCaskill and R. Croyeau, Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 2100.
- 32 F. Bouvier, A. d'Harlingue, C. Suire, R. A. Backhaus and B. Camara, *Plant Physiol.*, 1998, **117**, 1423.
- 33 B. Miller, T. Heuser and W. Zimmer, FEBS Lett., 1999, 460, 485.
- 34 T. Kuzuyama, M. Takagi, S. Takahashi and H. Seto, J. Bacteriol.,
- 2000, 182, 891.
 35 M. Estevez, A Cantero, C. Romero, H. Kawaide, L. F. Jimenez, T. Kuzuyama, H. Seto, Y. Kamiya and P. Leon, *Plant Physiol.*, 2000, 124, 95.
- 36 N. Araki, K. Kusumi, K. Masamoto, Y. Niwa and K. Iba, *Physiol. Plant.*, 2000, 108, 19.
- 37 M. Harker and P. M. Bramley, FEBS Lett., 1999, 448, 115.
- 38 T. Kuzuyama, S. Takahashi, H. Watanabe and H. Seto, Tetrahedron
- Lett., 1998, **39**, 4509. 39 S. Takahashi, T. Kuzuyama, H. Watanabe and H. Seto, *Proc. Natl.*
- *Acad. Sci. U.S.A.*, 1998, **95**, 9879. 40 B. M. Lange and R. Croteau, *Arch. Biochem. Biophys.*, 1999, **365**, 170.
- 41 J. Schwender, C. Müller, J. Zeidler and H. K. Lichtenthaler, FEBS Lett., 1999, 455, 140.
- 42 B. Miller, T. Heuser and W. Zimmer, FEBS Lett., 2000, 481, 221.
- 43 T. Kuzuyama, S. Takahashi, M. Takagi and H. Seto, J. Biol. Chem.,
- 2000, 275, 19928.
 44 P. J. Proteau, Y.-H. Woo, R. T. Williamson and C. Phaosiri, *Org. Lett.*, 1999, 1, 921.
- 45 T. Radykewicz, F. Rohdich, J. Wungsintaweekul, S. Herz, K. Kis, W. Eisenreich, A. Bacher, M. H. Zenk and D. Arigoni, *FEBS Lett.*, 2000, **465**, 157.
- 46 T. Kuzuyama, T. Shimizu, S. Takahashi and H. Seto, *Tetrahedron Lett.*, 1998, **39**, 7913.
- 47 J. Zeidler, J. Schwender, C. Müller, J. Wiesner, C. Weidemeyer, E. Beck, H. Jomaa and H. K. Lichtenthaler, Z. Naturforsch., Teil C, 1998, 53, 980.
- 48 S. Sagner, W. Eisenreich, M. Fellermeier, C. Latzel, A. Bacher and M. H. Zenk, *Tetrahedron Lett.*, 1998, 39, 2091.
- 49 D. Arigoni, J.-L. Giner, S. Sagner, J. Wungsintaweekul, M. H. Zenk, K. Kis, A. Bacher and W. Eisenreich, *Chem. Commun.*, 1999, 1127.
- 50 M. Fellenmeier, K. Kis, S. Sagner, U. Maier, A. Bacher and M. H. Zenk, *Tetrahedron Lett.*, 1999, 40, 2743.
- 51 M. A. Fellenmeier, U. H. Maier, S. Sagner, A. Bacher and M. H. Zenk, *FEBS Lett.*, 1998, **437**, 278.
- 52 T. Kuzuyama, M. Takagi, K. Kaneda, T. Dairi and H. Seto, *Tetrahedron Lett.*, 2000, **41**, 703.
- 53 F. Rohdich, J. Wungsintaweekul, W. Eisenreich, G. Richter, C. A. Schuhr, S. Hecht, M. H. Zenk and A. Bacher, *Proc. Natl. Acad. Sci. U.S.A.*, 2000, **97**, 6451.
- 54 T. Kuzuyama, M. Takagi, K. Kaneda, H. Watanabe, T. Dairi and H. Seto, *Tetrahedron Lett.*, 2000, **41**, 2925.
- 55 H. Lüttgen, F. Rohdich, S. Herz, J. Wungsintaweekul, S. Hecht, C. A. Schuhr, M. Fellermeier, S. Sagner, M. H. Zenk, A. Bacher and W. Eisenreich, *Proc. Natl. Acad. Sci. U.S.A.*, 2000, 97, 1062.
- 220 Nat. Prod. Rep., 2002, 19, 181–222

- 56 F. Rohdich, J. Wungsintaweekul, H. Lüttgen, M Fischer, W. Eisenreich, C. A. Schuhr, M. Fellermeier, N. Schramek, M. H. Zenk and A. Bacher, *Proc. Natl. Acad. Sci. U.S.A.*, 2000, **97**, 8251.
- 57 B. M. Lange and R. Croteau, Proc. Natl. Acad. Sci. U.S.A., 1999, 96, 13714.
- 58 S. Herz, J. Wungsintaweekul, C. A. Schuhr, S. Hecht, H. Lüttgen, S. Sagner, M. Fellermeier, W. Eisenreich, M. H. Zenk, A. Bacher and F. Rohdich, *Proc. Natl. Acad. Sci. U.S.A.*, 2000, 97, 2486.
- 59 H. K. Lichtenthaler, J. Zeidler, J. Schwender and C. Müller, Z. Naturforsch., Teil C, 2000, 55, 305.
- 60 D. McCaskill and R. Croteau, Tetrahedron Lett., 1999, 40, 653.
- 61 J.-L. Giner, B. Jaun and D. Arigoni, Chem. Commun., 1998, 1857.
- 62 M. Rodriguez-Conception, N. Campos, L. M. Lois, C. Maldonado, J.-F. Hoeffler, C. Grosdemange-Billiard, M. Rohmer and A. Boronat, *FEBS Lett.*, 2000, 473, 328.
- 63 L. Charon, J.-F. Hoeffler, C. Pale-Grosdemange, L.-M. Lois, N. Campos, A. Boronat and M. Rohmer, *Biochem. J.*, 2000, 346, 737.
- 64 F. M. Hahn, A. P. Hurlburt and C. D. Poulter, J. Bacteriol., 1999, 181, 4499.
- 65 D. Arigoni, W. Eisenreich, C. Latzel, S. Sagner, T. Radykewicz, M. H. Zenk and A. Bacher, *Proc. Natl. Acad. Sci. U.S.A.*, 1999, 96, 1309.
- 66 C. Rieder, B. Jaun and D. Arigoni, Helv. Chim. Acta, 2000, 83, 2504.
- 67 J.-L. Giner and B. Jaun, Tetrahedron Lett., 1998, 39, 8021.
- 68 L. Charon, C. Pale-Grosdemange and M. Rohmer, *Tetrahedron Lett.*, 1999, 40, 7231.
- 69 P. J. Proteau, Tetrahedron Lett., 1998, 39, 9373.
- 70 D. J. Fowler, J. T. G. Hamilton, A. J. Humphrey and D. O'Hagan, *Tetrahedron Lett.*, 1999, 40, 3803.
- 71 F. X. Cunningham, T. P. Lafond and E. Gantt, J. Bacteriol., 2000, 182, 5841.
- 72 W. P. Wagner, D. Helmig and R. Fall, J. Nat. Prod., 2000, 63, 37.
- 73 S. Sagner, C. Latzel, W. Eisenreich, A. Bacher and M. H. Zenk, *Chem. Commun.*, 1998, 221.
- 74 A. Contin, R. van der Heijden, A. W. M. Lefeber and R. Verpoorte, FEBS Lett., 1998, 434, 413.
- 75 D. Eichinger, A. Bacher, M. H. Zenk and W. Eisenreich, *Phytochemistry*, 1999, **51**, 223.
- 76 K.-P. Adam and J. Zapp, Phytochemistry, 1998, 48, 953.
- 77 K.-P. Adam, R. Thiel and J. Zapp, Arch. Biochem. Biophys., 1999, 369, 127.
- 78 N. Hirai, R. Yoshida, Y. Todoroki and H. Ohigashi, *Biosci. Biotechnol. Biochem.*, 2000, 64, 1448.
- 79 A. Fontana, G. Villani and G. Cimino, *Tetrahedron Lett.*, 2000, 41, 2429.
- 80 U. Warmers and W. A. König, Phytochemistry, 2000, 53, 645
- 81 W. Maier, B. Schneider and D. Strack, *Tetrahedron Lett.*, 1998, **39**, 521.
- 82 J. Piel, J. Donath, K. Bandemer and W. Boland, Angew. Chem., Int. Ed., 1998, 37, 2478.
- 83 N. Totte, L. Charon, M. Rohmer, F. Compernolle, I. Baboeuf and J. M. C. Geuns, *Tetrahedron Lett.*, 2000, **41**, 6407.
- 84 T. Hayashi, T. Asai and U. Sankawa, *Tetrahedron Lett.*, 1999, 40, 8239.
- 85 P. Proteau, J. Nat. Prod., 1998, 61, 841.
- 86 K. Nabeta, T. Saitoh, K. Adachi and K. Komuro, *Chem. Commun.*, 1998, 671.
- 87 W. Eisenreich, C. Rieder, C. Grammes, G. Heßler, K.-P. Adam, H. Becker, D. Arigoni and A. Bacher, *J. Biol. Chem.*, 1999, 274, 36312.
- 88 C. Rieder, G. Strauß, G. Fuchs, D. Arigoni, A. Bacher and W. Eisenreich, J. Biol. Chem., 1998, 273, 18099.
- 89 H. Shigemori, H. Komaki, K. Yazawa, Y. Mikami, A. Nemoto, Y. Tanaka and J. Kobayashi, *Tetrahedron Lett.*, 1999, 40, 4353.
- 90 J. H. Cvejic and M. Rohmer, Phytochemistry, 2000, 53, 21.
- 91 A. Disch, J. Schwender, C. Muller, H. K. Lichtenthaler and M. Rohmer, *Biochem. J.*, 1998, 333, 381.
- 92 W.-X. Zhou and W. D. Nes, Tetrahedron Lett., 2000, 41, 2791.
- 93 S. R. Putra, L. M. Lois, N. Campos, A. Boronat and M. Rohmer, *Tetrahedron Lett.*, 1998, 39, 23.
- 94 A. Disch, A. Hemmerlin, T. J. Bach and M. Rohmer, *Biochem. J.*, 1998, **331**, 615.
- 95 H. Seto, N. Orihara and K. Furihata, *Tetrahedron Lett.*, 1998, **39**, 9497.
- 96 Y. Asada, W. Li and T. Yoshikawa, Phytochemistry, 2000, 55, 323.
- 97 V. Stanjek, J. Piel and W. Boland, Phytochemistry, 1999, 50, 1141.
- 98 N. Orihara, T. Kuzuyama, S. Takahashi, K. Furihata and H. Seto, J. Antibiot., 1998, 51, 676.
- 99 S.-M. Li, S. Hennig and L. Heide, Tetrahedron Lett., 1998, 39, 2717.

- 100 M. Goese, K. Kammhuber, A. Bacher, M. H. Zenk and W. Eisenreich, Eur. J. Biochem., 1999, 263, 447
- 101 D. Eichinger, A. Bacher, M. H. Zenk and W. Eisenreich, J. Am. Chem. Soc., 1999, 121, 7469.
- 102 K. Irie, Y. Nakagawa, S. Tomimatsu and H. Ohigashi, Tetrahedron Lett., 1998, 39, 7929.
- 103 S.-M. Li, S. Hennig and L. Heide, Tetrahedron Lett., 1998, 39, 2721
- 104 A. Mühlbauer, J. Beyer and W. Steglich, Tetrahedron Lett., 1998, 39, 5167.
- 105 E. M. Stocking, J. F. Sanz-Cervera and R. M. Williams, Angew. Chem., Int. Ed., 1999, 38, 786.
- 106 B. M. Lange, T. Rujan, W. Martin and R. Croteau, Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 13172.
- 107 Y. Boucher and W. F. Doolittle, Mol. Microbiol., 2000, 37, 703.
- 108 W. Eisenreich, M. Schwarz, A. Cartayrade, D. Arigoni, M. H. Zenk and A. Bacher, Chem. Biol., 1998, 5, R221.
- 109 H. K. Lichtenthaler, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999. 50. 47.
- 110 M. Rohmer, Nat. Prod. Rep., 1999, 16, 565.
- 111 C. C. Burke, M. R. Wilding and R. Croteau, Proc. Natl. Acad. Sci. U.S.A., 1999, 96, 13062.
- 112 J. Gaffe, J.-P. Bru, M. Causse, A. Vidal, L. Stamitti-Bert, J.-P. Carde and P. Gallusci, Plant Physiol., 2000, 123, 1351.
- 113 M. Castillo-Gracia and F. Couillaud, Eur. J. Biochem., 1999, 262, 365
- 114 D.-H. Chen, H.-C. Ye and G.-F. Li, Plant Sci., 2000, 155, 179.
- 115 S. M. S. Fernandez, B. A. Kellogg and C. D. Poulter, Biochemistry, 2000, 39, 15316.
- 116 K. Narita, S.-I. Ohnuma and T. Nishino, J. Biochem. (Tokyo), 1999, 126, 566.
- 117 G. Laskaris, R. van der Heijden and R. Verpoorte, Plant Sci., 2000, 153 97
- 118 G. Laskaris, M. Bounkhay, G. Theodoridis, R. van der Heijden, R. Verpoorte and M. Jaziri, Plant Sci., 1999, 147, 1.
- 119 J. Hefner, R. E. B. Ketchum and R. Croteau, Arch. Biochem. Biophys., 1998, 360, 62.
- 120 S.-K. Oh, I. J. Kim, D. H. Shin, J. Jang, H. Kang and K.-H. Han, *J. Plant Physiol.*, 2000, **157**, 535. 121 T. Kuzuguchi, Y. Morita, I. Sagami, H. Sagami and K. Ogura,
- J. Biol. Chem., 1999, 274, 5888.
- 122 C. Ohto, H. Nakane, H. Hemmi, S.-I. Ohnuma, S. Obata and T. Nishino, Biosci. Biotechnol. Biochem., 1998, 62, 1243.
- 123 C. Ohto, C. Ishida, A. Koike-Takeshita, K. Yokouama, M. Muramatsu, T. Nishino and S. Obata, Biosci. Biotechnol. Biochem., 1999. 63. 261.
- 124 K. Okada, T. Saito, T. Nakgawa, M. Kawamukai and Y. Kamiya, Plant Physiol., 2000, 122, 1045.
- 125 N. Kojima, W. Sitthithaworn, E. Viroonchatapan, D.-Y. Suh, N. Iwanami, T. Hayashi and U. Sankawa, Chem. Pharm. Bull., 2000. 48, 1101.
- 126 S.-I. Ohnuma, K. Hirooka, N. Tsuruoka, M. Yano, C. Ohto, H. Nakane and T. Nishino, J. Biol. Chem., 1998, 273, 26705.
- 127 N. Shimizu, T. Koyama and K. Ogura, J. Bacteriol., 1998, 180, 1578
- 128 Y.-W. Zhang, T. Koyama, D. M. Marecak, G. D. Prestwisch, Y. Maki and K. Ogura, Biochemistry, 1998, 37, 13411.
- 129 Y.-W. Zhang, X.-Y. Li, H. Sugawara and T. Koyama, Biochemistry, 1999, 38, 14638.
- 130 K. Hirooka, S.-I. Ohnuma, A. Koike-Takeshita, T. Koyama and T. Nishino, *Eur. J. Biochem.*, 2000, **267**, 4520.
- 131 Y.-W. Zhang, X.-Y. Li and T. Koyama, Biochemistry, 2000, 39, 12717.
- 132 K. Okada, T. Kainou, K. Tanaka, T. Nakagawa, H. Matsuda and M. Kawamukai, Eur. J. Biochem., 1998, 255, 52.
- 133 N. Shimizu, T. Koyama and K. Ogura, J. Biol. Chem., 1998, 273, 19476.
- 134 J.-J. Pan, S.-T. Chiou and P.-H. Liang, Biochemistry, 2000, 39, 10936.
- 135 D. C. Crick, M. C. Schulbach, E. E. Zink, M. Macchia, S. Barontini, G. S. Besra and P. J. Brennan, J. Bacteriol., 2000, 182, 5771.
- 136 M. C. Schulbach, P. J. Brennan and D. C. Crick, J. Biol. Chem., 2000, **275**, 22876.
- 137 N. Cunillera, M. Arro, O. Fores, D. Manzano and A. Ferrer, FEBS Lett., 2000, 477, 170.
- 138 Y. Keller, F. Bouvier, A. d'Harlingue and B. Camara, Eur. J. Biochem., 1998, 251, 413.
- 139 R. Tanaka, U. Oster, E. Kruse, W. Rüdiger and B. Grimm, Plant Physiol., 1999, 120, 695.
- 140 A. Tachibana, Y. Yano, S. Otani, N. Nomura, Y. Sako and M. Taniguchi, *Eur. J. Biochem.*, 2000, **267**, 321.

- 141 T. Eguchi, M. Morita and K. Kakinuma, J. Am. Chem. Soc., 1998, 120. 5427
- 142 T. Eguchi, H. Takyo, M. Morita, K. Kakinuma and Y. Koga, Chem. Commun., 2000, 1545.
- 143 K. Ogura and T. Koyama, Chem. Rev., 1998, 98, 1263.
- 144 J.-W. Jia, J. Crock, S. Lu, R. Croteau and X.-Y. Chen, Arch. Biochem. Biophys., 1999, 372, 143.
- 145 J. Bohlmann, D. Martin, N. J. Oldham and J. Gershenzon, Arch. Biochem. Biophys., 2000, 375, 261.
- 146 D. C. Williams, D. J. McGarvey, E. J. Katahira and R. Croteau, Biochemistry, 1998, 37, 12213.
- 147 S. Lupien, F. Karp, M. Wildung and R. Croteau, Arch. Biochem. Biophys., 1999, 368, 181.
- 148 M. Schalk and R. Croteau, Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 11948.
- 149 H. J. Bouwmeester, M. C. J. M. Konings, J. Gershenzon, F. Karp and R. Croteau, Phytochemistry, 1999, 50, 243.
- 150 M. L. Wise, T. J. Savage, E. Hatahira and R. Croteau, J. Biol. Chem., 1998, 273, 14891.
- 151 K.-P. Adam and R. Croteau, Phytochemistry, 1998, 49, 475.
- 152 M. A. Phillips, T. J. Savage and R. Croteau, Arch. Biochem. Biophys., 1999, 372, 197
- 153 J. Bohlmann, M. Phillips, V. Ramachandiran, S. Katoh and R. Croteau, Arch. Biochem. Biophys., 1999, 368, 232
- 154 K. Fujita, T. Yamaguchi, R. Itose and K. Sakai, J. Plant. Physiol., 2000, 156, 462.
- 155 D. L. Hallahan, J. M. West, D. W. M. Smiley and J. A. Pickett, Phytochemistry, 1998, 48, 421
- 156 L. B. Frederiksen, S. Damtoft and S. R. Jensen, Phytochemistry, 1999, 52, 1409.
- 157 S. R. Jensen, L. Ravbkilde and J. Schripsema, Phytochemistry, 1998. 47. 1007.
- 158 R. É. Krull, F. R. Stermitz, H. Franzyk and S. R. Jensen, Phytochemistry, 1998, 49, 1605.
- 159 H. Yamamoto, N. Katano, A. Ooi and K. Inoue, Phytochemistry, 1999, 50, 417.
- 160 H. Yamamoto, N. Katano, A. Ooi and K. Inoue, Phytochemistry, 2000, 53, 7.
- 161 H. Kuwajima, T. Tanahashi, K. Inoue and H. Inouye, Chem. Pharm. Bull., 1999, 47, 1634.
- 162 S. Thai, J. S. Rush, T. Devarenne, D. L. Rogers, J. Chappell and C. J. Waechter, Proc. Natl. Acad. Sci. U.S.A., 1999, 96, 13080.
- 163 D. E. Cane and I. Kang, Arch. Biochem. Biophys., 2000, 376, 354.
- 164 J. M. Caruthers, I. Kang, M. J. Rynkiewicz, D. E. Cane and D. W. Christianson, J. Biol. Chem., 2000, 275, 25533.
- 165 K. A. Rising, C. M. Starks, J. P. Noel and J. Chappell, J. Am. Chem. Soc., 2000, 122, 1861.
- 166 J.-W. de Kraker, M. C. R. Franssen, A. de Groot, W. A. König and H. J. Bouwmeester, Plant Physiol., 1998, 117, 1381.
- 167 S. M. Colby, J. Crock, B. Dowdle-Rizzo, P. G. Lemaux and R. Croteau, Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 2216.
- 168 C. O. Schmidt, H. J. Bouwmeester, J.-W. de Kraker and W. A. König, Angew. Chem., Int. Ed., 1998, 37, 1400.
- 169 C. L. Steele, J. Crock, J. Bohlmann and R. Croteau, J. Biol. Chem., 1998, 273, 2078.
- 170 I. Alchanati, J. A. A. Patel, J. Liu, C. R. Benedict, R. D. Stipanovic, A. A. Bell, Y. Cui and C. W. Magill, Phytochemistry, 1998, 47, 961.
- 171 Y.-L. Meng, J.-W. Jia, C.-J. Liu, W.-Q. Liang, P. Heinstein and X.-Y. Chen, J. Nat. Prod., 1999, 62, 248.
- 172 J. Liu, C. R. Benedict, R. D. Stipanovic and A. A. Bell, Plant Physiol., 1999, 121, 1017.
- 173 D. E. Cane and N. Ke, Bioorg. Med. Chem. Lett., 2000, 10, 105.
- 174 J. Bohlmann, J. Crock, R. Jetter and R. Croteau, Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 6756.
- 175 D. E. Cane and T. E. Bowser, Bioorg. Med. Chem. Lett., 1999, 9, 1127.
- 176 L. O. Zamir, A. Nikolakakis, L. Huang, P. St-Pierre, F. Sauriol, S. Sparace and O. Mamer, J. Biol. Chem., 1999, 274, 12269.
- 177 M. Kimura, I. Kaneko, M. Komiyama, A. Takatsuki, H. Koshino, K. Yoneyama and I. Yamaguchi, J. Biol. Chem., 1998, 273, 1654.
- 178 M. Kimura, G. Matsumoto, Y. Shingu, K. Yoneyama and I. Yamaguchi, FEBS Lett., 1998, 435, 163.
- 179 S. P. McCormick, N. J. Alexander, S. E. Trapp and T. M. Hohn, Appl. Environ. Microbiol., 1999, 65, 5252.
- 180 N. J. Alexander, T. M. Hohn and S. P. McCormick, Appl. Environ. Microbiol., 1998, 64, 221.
- 181 J. Wuchiyama, M. Kimura and I. Yamaguchi, J. Antibiot., 2000, 53, 196.
- 182 N. J. Alexander, S. P. McCormick and T. M. Hohn, Mol. Gen. Genet., 1999, 261, 977.
- 183 K. Nabeta, K. Komuro, T. Utoh, H. Tazaki and H. Koshino, Chem. Commun., 1998, 169.

- 184 H. J. Bouwmeester, T. E. Wallaart, M. H. A. Janssen, B. van Loo, B. J. M. Jansen, M. A. Posthumus, C. O. Schmidt, J.-W. de Kraker, W. A. König and M. C. R. Franssen, *Phytochemistry*, 1999, **52**, 843.
- 185 P. Mercke, M. Bengtsson, H. J. Bouwmeester, M. A. Posthumus and P. E. Brodelius, Arch. Biochem. Biophys., 2000, 381, 173.
- 186 Y.-J. Chang, S.-H. Song, S.-H. Park and S.-U. Kim, Arch. Biochem. Biophys., 2000, 383, 178.
- 187 T. E. Wallaart, W. van Uden, H. G. M. Lubberink, H. J. Woerdenbag, N. Pras and W. J. Quax, *J. Nat. Prod.*, 1999, **62**, 430.
- 188 T. E. Wallaart, N. Pras and W. J. Quax, J. Nat. Prod., 1999, 62, 1160.
- 189 T. E. Wallaart, N. Pras, A. C. Beekman and W. J. Quax, *Planta Med.*, 2000, 66, 57.
- 190 S. Bharel, A. Gulati, M. Z. Abdin, P. S. Srivastava, R. A. Vishwakarma and S. K. Jain, J. Nat. Prod., 1998, 61, 633.
- 191 P. Mercke, J. Crock, R. Croteau and P. E. Brodelius, Arch. Biochem. Biophys., 1999, **369**, 213.
- 192 L. Hua and S. P. T. Matsuda, Arch. Biochem. Biophys., 1999, 369, 208.
- 193 M. Seemann, G. Zhai, K. Umezawa and D. Cane, *J. Am. Chem. Soc.*, 1999, **121**, 591.
- 194 M. L. Burgess and K. D. Barrow, J. Chem. Soc., Perkin Trans. 1, 1999, 2461.
- 195 M. Hashimoto, R. Hozumi, M. Yamamoto and K. Nabeta, *Phytochemistry*, 1999, **51**, 389.
- 196 K. Katoh, K. Yamamoto, M. Yamamoto, M. Hashimoto and K. Nabeta, *Biosci. Biotechnol. Biochem.*, 1998, **62**, 2480.
- 197 K. Nabeta, K. Yamamoto, M. Hashimoto, H. Koshino, K. Funatsuki and K. Katoh, *Chem. Commun.*, 1998, 1485.
- 198 A. Fontana, M. L. Ciavatta, T. Miyamoto, A. Spinella and G. Cimino, *Tetrahedron*, 1999, 55, 5937.
- 199 H. Nakajima, Y. Toratsu, Y. Fujii, M. Ichinoe and T. Hamasaki, *Tetrahedron Lett.*, 1998, **39**, 1013.
- 200 X. Qin and J. A. D. Zeevaart, Proc. Natl. Acad. Sci. U.S.A., 1999, 96, 15354.
- 201 J. E. Krochko, G. D. Abrams, M. K. Loewen, S. R. Adams and A. J. Cutler, *Plant Physiol.*, 1998, **118**, 849.
- 202 H. J. Bouwmeester, F. W. A. Verstappen, M. A. Posthumus and M. Dicke, *Plant Physiol.*, 1999, **121**, 173.
- 203 J. Degenhardt and J. Gershenzon, Planta, 2000, 210, 815.
- 204 W. Boland, A. G\u00e4bler, M. Gilbert and Z. Feng, *Tetrahedron*, 1998, 54, 14725.
- 205 P. Tansakul and W. De-Eknamkul, *Phytochemistry*, 1998, **47**, 1241.
- 206 K.-X. Huang, Q.-L. Huang and A. I. Scott, Arch. Biochem. Biophys., 1998, **352**, 144.
- 207 Q. Huang, K. Huang and A. I. Scott, *Tetrahedron Lett.*, 1998, 39, 2033.
- 208 D. C. Williams, B. J. Carroll, Q. Jin, C. D. Rithner, S. R. Lenger, H. G. Floss, R. M. Coates, R. M. Williams and R. Croteau, *Chem. Biol.*, 2000, 7, 969.
- 209 D. C. Williams, M. R. Wildung, A. Q. Jin, D. Dalal, J. S. Oliver, R. M. Coates and R. Croteau, *Arch. Biochem. Biophys.*, 2000, 379, 137.
- 210 Q. Huang, H. J. Williams, C. A. Roessner and A. I. Scott, *Tetrahedron Lett.*, 2000, 41, 9701.
- 211 K. Walker, R. E. B. Ketchum, M. Hezari, D. Gatfield, M. Goleniowski, A. Barthol and R. Croteau, *Arch. Biochem. Biophys.*, 1999, 364, 273.
- 212 K. Walker, A. Schoendorf and R. Croteau, Arch. Biochem. Biophys., 2000, 374, 371.
- 213 W. Eisenreich, B. Menhard, M. S. Lee, M. H. Zenk and A. Bacher, J. Am. Chem. Soc., 1998, **120**, 9694.
- 214 B. Menhard and M. H. Zenk, Phytochemistry, 1999, 50, 763.

- 215 J. J. Pennington, A. G. Fett-Neto, S. A. Nicholson, D. G. I. Kingston and F. Dicosmo, *Phytochemistry*, 1998, **49**, 2261.
- 216 K. Walker and R. Croteau, Proc. Natl, Acad. Sci. U.S.A., 2000, 97, 583.
- 217 K. Walker and R. Croteau, Proc. Natl, Acad. Sci. U.S.A., 2000, 97, 13591.
- 218 K. Walker and H. G. Floss, J. Am. Chem. Soc., 1998, 120, 5333.
- 219 J. Kobayashi and H. Shigemori, Heterocycles, 1998, 47, 1111.
- 220 E. Baloglu and D. G. I. Kingston, J. Nat. Prod., 1999, 62, 1448.
- 221 N. Kato, C.-S. Zhang, N. Tajima, A. Mori, A. Graniti and T. Sassa, Chem. Commun., 1999, 367.
- 222 T. Sassa, C.-S. Zhang, M. Sato, N. Tajima, N. Kato and A. Mori, *Tetrahedron Lett.*, 2000, **41**, 2401.
- 223 R. J. Peters, J. E. Flory, R. Jetter, M. M. Ravn, H.-J. Lee, R. M. Coates and R. B. Croteau, *Biochemistry*, 2000, **39**, 15592.
- 224 M. M. Ravn, R. M. Coates, R. Jetter and R. B. Croteau, *Chem. Commun.*, 1998, 21.
- 225 H. Oikawa, S. Ohashi, A. Ichihara and S. Sakamura, *Tetrahedron*, 1999, 55, 7541.
- 226 M. W. Smith, S. Yamaguchi, T. Ait-Ali and Y. Kamiya, *Plant Physiol.*, 1998, **118**, 1411.
- 227 H. Kawaide, T. Sassa and Y. Kamiya, J. Biol. Chem., 2000, 275, 2276.
- 228 T. Toyomasu, H. Kawaide, A. Ishizaki, S. Shinoda, M. Otsuka, W. Mitsuhashi and T. Sassa, *Biosci. Biotechnol. Biochem.*, 2000, 64, 660.
- 229 C. A. Helliwell, C. C. Sheldon, M. R. Olive, A. R. Walker, J. A. D. Zeevaart, W. J. Peacock and E. S. Dennis, *Proc. Natl. Acad. Sci. U.S.A.*, 1998, **95**, 9019.
- 230 C. A. Helliwell, A. Poole, W. J. Peacock and E. S. Dennis, *Plant Physiol.*, 1999, **119**, 507.
- 231 M. Kobayashi, J. MacMillan, B. Phinney, P. Gaskin, C. R. Spray and P. Hedden, *Phytochemistry*, 2000, 55, 317.
- 232 G. Davis, M. Kobayashi, B. O. Phinney, J. MacMillan and P. Gaskin, *Phytochemistry*, 1998, 47, 635.
- 233 G. Davis, M. Kobayashi, B. O. Phinney, T. Lange, S. J. Croker, P. Gaskin and J. MacMillan, *Plant Physiol*, 1999, **121**, 1037.
- 234 J. Williams, A. L. Phillips, P. Gaskin and P. Hedden, *Plant Physiol.*, 1998, **117**, 559.
- 235 S. Huang, A. S. Raman, J. E. Ream, H. Fujiwara, R. E. Cerny and S. M. Brown, *Plant Physiol.*, 1998, **118**, 773.
- 236 H.-G. Kang, S.-H. Jun, J. Kim, H. Kawaide, Y. Kamiya and G. An, *Plant Physiol.*, 1999, **121**, 373.
- 237 S. G. Thomas, A. L. Phillips and P. Hedden, Proc. Natl. Acad. Sci. U.S.A., 1999, 96, 4698.
- 238 D. N. Martin, W. M. Proebsting and P. Hedden, *Plant Physiol.*, 1999, **121**, 775.
- 239 G. M. Wynne, L. N. Mander, N. Goto, H. Yamane and T. Omori, *Tetrahedron Lett.*, 1998, 39, 3877.
- 240 T. Lange, Planta, 1998, 204, 409.
- 241 P. Hedden and W. M. Proebsting, Plant Physiol., 1999, 119, 365.
- 242 G. Duester, Eur. J. Biochem., 2000, 267, 4315.
- 243 A. Romert, P. Tuvendal, A. Simon, L. Deneker and U. Eriksson, Proc. Natl. Acad. Sci. U.S.A., 1998, 95, 4404.
- 244 J. Paik, S. Vogel, R. Piantedosi, A. Sykes, W. S. Balner and K. Swisshelm, *Biochemistry*, 2000, **39**, 8073.
- 245 C. A. G. G. Driessen, H. J. Winkens, E. D. Kuhlmann, A. P. M. Janssen, A. H. M. van Vugt, A. F. Deutman and J. J. M. Janssen, *FEBS Lett.*, 1998, **428**, 135.
- 246 T. Seki, K. Isono, K. Ozaki, Y. Tsukahara, Y. Shibata-Katsuta, M. Ito, T. Irie and M. Katagiri, *Eur. J. Biochem.*, 1998, **257**, 522.
- 247 F. Côté, F. Cormier, C. Dufresne and C. Willemot, *Plant Sci.*, 2000, 153, 55.
- 248 M. K. Renner, P. R. Jensen and W. Fenical, J. Org. Chem., 2000, 65, 4843.